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Abstract

Top quark mass measurement using
charmed meson within b-jet

Geonmo Ryu

Department of Physics
The Graduate School

University of Seoul

To measure top quark mass by using charmed mesons from b quark jet is pre-
sented as an alternative solution among various top quark mass measurement. This
method has a merit about the jet energy uncertainty because it did not use jet’s
energy directly. Particularly, we focus on charmed mesons of b-jets like as DY,
D*(2010) and J/v on this thesis. These mesons can be decayed to charged hadrons
or leptons instead of neutral particles. So, this property can minimize a noise ef-
fect from background and pileup energy. Using Run2016 L = 15.9fb1\/s = 13TeV
events at CMS detector, we confirmed that the invariant mass of isolated lepton
and the charmed meson has a correlation with top quark mass. In addition, we
extracted top quark mass from calibration curve of M;,, vs M s,. Using [ + D°

meson, we acquired the top mass as 180.69 + 5.73 (stat.) T35 (syst.) GeV/c?.



Unfortunately, J/¢ and D*(2010) can not be fitted due to too small statistic.
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Chapter 1

Introduction

On Standard Model, a top quark is heaviest elementary particle. In addition, the
top quark has largest mass uncertainty. Therefore, to measure top quark mass is
valuable and can help to search beyond standard model or to precisely measure
some particle’s properties which decay into top quark. After discovery of top quark
in 1995, many measurement were developed and improved. In recent years, for di-
leptonic decay channel, analytic solution was published and measured to precise
top quark mass. However, this method has a limitation about jet energy uncer-
tainty. As collision energy will go higher, the jet energy uncertainty also will in-
crease due to background and pileup energy. So, we need to explore another so-
lution to overcome this limitation. We proposed to measure top quark mass using

charmed meson within b-jet. Because, this method did not use jet energy to re-
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construct top quark mass directly. so, we can minimized jet uncertainty effect for

mass measurement.



Chapter 2

Theoretical overview

2.1 Standard Model

The Standard model is a theory to compile the three of four fundamental interac-
tions at nature like as electromagnetic, weak and strong interactions except grav-
ity. As Fig 2.1, this theory describes 12 flavor quarks and lepton include for each
antiparticle, 4 kinds of interaction mediate bosons and higgs boson.[1] In theo-
retically, the model is consist of Electroweak theory, QCD and higgs mechanism.
The QCD is a theory about string interactions of between quarks and gluons. The
electroweak theory explains about electromagnetic interaction for charged particles
and weak interaction for left-handed fermion, W and Z gauge bosons. Then, the

higgs mechanism explains how the fermions and gauge bosons obtained the masses.
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Figure 2.1: Elementary particles of the standard model
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Figure 2.2: Tree-level LO Feynman diagrams that contribute to t t production.

2.1.1 Quantum Chronodynamics (QCD)

Among the fermion particles, only quarks are affected by strong interaction. It
means that they have a different quantum number as ”color”. This color has 3

types for each quark as red, green and blue.

2.2 Top and anti-Top (¢t) pair production at 13TeV
On Fig2.2,[2]
2.2.1 ElectroWeak interaction

2.2.2 Decay channel of tf event

2.2.3 Charmed mesons from b quark jet



Chapter 3

Previous measurement of top

quark mass

3.1 Mass measurement from Tevatron

3.1.1 Result from Tevatron

mass :

3.2 Mass measurement from LHC

3.2.1 Combination results from LHC

mass :
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3.2.2 Similar method results



Chapter 4

Experimental Setup

4.1 Large Hadron Collider(LHC)

4.1.1 CMS Detector

4.1.1.1 Tracker

4.1.1.2 Electromagnetic Calorimeter(HCAL)
4.1.1.3 Hadron Calorimeter(ECAL)

4.1.1.4 Muon System

e DT and CSC

e RPC and GEM



Chapter 5

Computing

5.1 GRID Computing for LHC experiment

5.1.1 LHC Computing Grid(LCG)

The Collision data which are produced from CMS detector are too big
by handle small size cluster. Thus, many computing resource were re-
quired to analysis. However, to buying and gathering resources into spe-
cific regions is not efficiency due to cost problem. So, GRID computing

was developed to solve this problem.
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5.1.2 Middleware
5.1.3 Dataset and Data Aggregation System
5.1.4 SRM protocol and ROOT FileSystem

5.1.5 PhEDEx : Large Size File Transfer System

5.2 System Setup

10



Chapter 6

Physics object reconstruction

On feymann diagram of tf event, we will find various objects as stable particles
like as the leptons, Jets and MET (neutrino) to select event or measure top quark
mass. It mean that we need to know how to assign a particle candidate to proper

physics object.

6.1 Muon

A muon has a proper mass(100MeV) to pass though the ECAL and the HCAL.
So, we can measure the muon hits from the tracker to muon system which located
at calorimeter’s outside. We have 3 muon categories which are proposed by CMS

Muon Physics object Group(POG).[3]
1. Standalone Muon : This standalone muons are reconstructed using only hits

11
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which are located at muon system. Due to no link to any other sub detector,

the standalone muons may have a large identification rate.

2. Global Muon(Outside-in) : If a standalone muon can link to a tracker’s track,
it will be assigned as global muon. Because this global muon used whole

information of muon system and tracker, it will be the best muon candidates.

3. Tracker Muon(Inside-out) : If a tracker track can link to a muon segment of
muon system, it will be assigned as a tracker muon. It did not use full muon
system information. So, it may be a fake muon. However, it don’t need to
fulfill standalone muon. It means that some tracks can be kept which don’t
have enough momentum. On this study, we need to find non-isolated soft

leptons within jet. In this case, this tracker muon can be considerable.

6.2 Electron

The electron can leave the energy to tracker and ECAL cluster. Due to election’s
mass is very light, it can radiate some photon as bremsstrahlung radiation. It
means that the electron will lose energy without charged tracks. To reconstruct the
electron properly, it need to estimate the energy loss of the radiation. On CMS,
Gaussian Sum Filter(GSF) was used to estimate track parameters by mixture of

Gaussian distribution for each tracker layer.[4]

1. A track started from tracker based seed to ECAL PF cluster. This track was

12
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recalculated by GSF method when the track reached to each layer.

2. Collect the energy of radiated photons to GSF track which are located at

track’s tangential direction.

3. When the GSF track is reached to ECAL, a ”supercluster” energy can be

collected to the electron candidate.

N e LSpy w= WLED SFIouans

sk, racapdad  1950=J an=i

¥
' §

i

Conv-&rem Cluﬁtgﬁ

- II .

Figure 6.1: Overview to reconstruction of PF Electron
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6.3 ParticleFlow(PF) algorithm

To maximize the efficiency performance of particle reconstruction, The ”Particle-
Flow” (PF) algorithm was developed. This algorithm links sub detector and an-
other sub detector to recover particle efficiency. Especially, it can share the en-
ergy within a cell to multiple cluster. So, we can divide multiple particle from
a overlapped energy deposit. On this study, the PF particles are used instead of

standalone based ones.[5]

6.3.1 Charged Hadron, Neutral Hadron and Photon

To separate Charged, neutral and photons from calorimeter hits, particle flow al-
gorithm is used. This algorithm can provide some links about track-ECAL /track-
HCAL/ECAL-HCAL/track-track/ECAL-preshower. If some hit successfully links
to 2 or above PF elements(For example, track-HCAL and track-ECAL), the algo-
rithm separate and share the energy from deposited hits to proper track. A Photon
can not deposit the energy to tracker and HCAL. So, the photon can not link to
other sub system and also can not make a PF Element. However, if some particles
are overlapped at same point of the photon, it need to consider to share the energy
to photon and neutral hadron. Almost case, no track to ECAL link is assumed to
the photon.

When we find the reset of the block(Mixture of PF element) after removing

14
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the photons, we can separate charged and neutral hadron particle using fraction

of energy and momentum.

6.4 Jet

The QCD particles like as the quark and gluon can not stable due to color neu-
tral property. Therefore, we can measure these QCD particles as jet object. We
used the PF Jets for analysis which are clustered using PF candidates from above

selection with Anti K jet finding algorithm.

6.4.1 b-tagging

A bottom quark will be hadronized to B meson. Because the B mesons have long
life time, it can deposit the energy to tracker as follow the track from primary
vertex to another secondary vertex. Using this property, we can divide the b-jet
or non b-jet. This job is called as "b-tagging”. On CMS, Combined Secondary
vertex method is used to determine b-tagging. Main issue of this method is to
use secondary vertex and jet kinematics and those information can be trained by

multivariate analysis tools.

15
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6.5 Missing ET

A Missing ET(MET) can be assumed to neutrino which can not measure at CMS
detector. So, we need to calculate missing ET, eta and phi to reconstruct the
neutrino because of momentum conservation. We used the ParticleFlow MET(PF

MET) for this analysis which are calculated using PF candidates.

16



Chapter 7

Reconstruction of the charmed

IMesoI1s

On this analysis, to reconstruct the charmed meson is very important. Because,
if we can not reconstruct precisely, its result has very large uncertainty. There-
fore, we need to study how to reconstruct charmed meson and remove combinatory

background from lack of information.

7.1 Track Selection

To reconstruct a charmed meson, we need to select proper tracks(or particle) from
jet constituents. A particle flow jet included the daughters information when the

jet was clustered from particle flow candidates. Therefore, we can acquire the tracks

17
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from jet daughters. A daughter can be assigned to a charged hadron or neutral
hadron and a lepton. To make vertex from 2 or 3 tracks which come from b-jet

should be succeeded to remove ridiculous vertex.

7.1.1 Kalman vertex fitter

This vertex fitter is based on kalman filter which are used to reduce background
using already known noise. Actually, this vertex fitter will work a global least-
squares minimization from track to track. However, it can help to guess energy

loss which come from multiple scattering and so on.

7.2 Reconstruction of charmed meson

On this analysis, we focus on J/v, D and D*(2010). Because, these mesons only
have soft lepton and charged particle daughters. When the soft lepton are used,
it can reduce combinatory background. As same words, D*°(2007) — D0+ 70 and

DT — KO0+ [+ v are not used.

7.2.1  J/

Bt = (J/Y = 1Tl7)+ KT (7.1)

BY — (J/p = 1T )+ Kt +7~ (72)

18
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A J/+¢ meson can be decayed to dilepton pair like as ptu~ or ete”. So, we can
acquire very clean invariant mass shape using this meson. It was reconstructed
by soft lepton pair among jet daughters. On this analysis, we only used p1 >
4GeV/c muon pair to avoid misidentification. Below 4GeV /c muon can not reach
to muon system. Because this meson channel is very rare, it need to study to

recover efficiency from uncertainty tracks.

7.2.2 DY
B—— (D" K- +7a")+1" 4+ (73)

A D meson can be decayed to kaon and pion. However, we do not know that
any charged hadron is a kaon or a pion. So, we assumed that all opposite sign
pairs of charged hadron from jet daughters to kaon and pion. Then, the calculate
the pair’s invariant mass and cut with DO mass window 1.864 & 0.050GeV/c?. A
soft lepton tag can reduce combinatory background but the tag was not applied
yet. Instead of soft lepton tag, we used L., and L3p cut are applied. It help to
remove which are too close to primary vertex. It means that that track did not

come from b quark jets.

19
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Figure 7.1: Various muon reconstruction candidates properties and .J/¢ mass dis-
tribution
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7.2.3  D*(2010)

B - (DY = D+ 7t - K~ +nt +7H) + 1T 4+

(7.4)
D*(2010) meson can be decayed to D0 and pion. In this case, we can hope that D0
also will be decay to kaon and pion meson. It means that this D* meson can be
measured only by charged hadron particles like as DO. Differ from D0, D**(2010)
meson’s invariant mass can not measure directly due to other decay channel like
as DT. However, we can observed D* meson using difference mass between D*
and its DO mass. This difference mass distribution is more clean than D0 meson.

So, this D* meson also good candidate to measure top quark mass.
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Chapter 8

Top quark mass measurement

8.1 Monte Carlo Samples

The CMS data management group provided the central samples about MC simu-
lation data. For tt dileptonic decay channel events, we use proper datasets which
can have 2 leptons or above. We used tf — [T]~ samples which was generated
by POWHEG generator at the next-to-leading order(NLO) in QCD.[6][7][8] This
signal sample was tuned by underlying event as CUETP8M1[9] and PYTHIAS[10]
was used for hadronization. For background, inclusive W process, drell-Yan, dibo-
son(WW,WZ,ZZ) and single top tW channel were used. Those samples can de-
cay to the dilepton or have a large cross section with 1 lepton. The inclusive
W(W+Jets) sample was generated by aMCQNLO generator[11]. The drell-yan +

additional jets(DYJets) was generated by aMCQNLO generator. The single top

23
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tW channel was generated by POWHEG generator for top and anti top quark.
The diboson(VV) samples about WW, WZ and ZZ were generated by PYTHIAS.
To avoid double counting between matrix element of real emission for NLO and
parton shower, every multiple jet samples were applied MLM merging for Leading-
Order and FXFX merging for NLO was used. Every NLO samples were simulated
by using NNPDF30_NLO_as_0118 which is a set of neural network parton distri-
bution function of LHAPDF[12]. In addition, every LO samples were simulated
using NNPDF30_lo_as_ 0130 pdf set. In additional, we also checked fast simulation

by Delphes simulator for toy 100fb~! simulation using same dataset.

8.2 Collision Data

On this analysis, we used Run2016 collision data which is/s=13TeV and £ =
15.9fb=1. Tab.8.2 shows a detail information for collision data. For each primary
dataset were the mixture of High Level Trigger(HLT). For analysis, we used spe-

cific HLTs trigger from primary dataset at Tab.8.3 for each channel. In short,

e Double Mu : a Leading muon pT" > 17GeV/c and 2nd leading muon pT >

8GeV/c

e Double EG : a Leading electron pT" > 17GeV/c and 2nd leading electron

pT > 12GeV/c
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Channel Data Sample Run Range luminosity (fb71)
Double Muon  Run2016B  Run273150 275376 5.87
Run2016C  Run275657 275783 2.65
Run2016D  Run276315 276811 4.35
Run2016E  Run276831 277420 3.05
Double EG Run2016B  Run273150 275376 5.89
Run2016C  Run275657 275783 2.65
Run2016D  Run276315 276811 4.35
Run2016E  Run276831 277420 3.05
Muon EG Run2016B  Run273150 275376 5.87
Run2016C  Run275657 275783 2.65
Run2016D  Run276315 276811 4.35
Run2016E  Run276831 277420 3.05
Table 8.2: Run2016 13TeV data £ = 15.9fb~!
Channel Trigger

Double Muon

HLT Mul7 TrklIsoVVL Mu8 TrklsoVVL DZ
HLT Mul7 TrklsoVVL TkMu& TrkIsoVVL DZ

Double EG

HLT Elel7 Elel2 CaloldL TrackIdL IsoVL DZ

Muon EG HLT Mul7 TrkIsoVVL Elel2 CaloldL TrackIdL IsoVL

HLT Mu8 TrklIsoVVL Elel7 CaloldL TrackIdL IsoVL

Table 8.3: High Level Trigger information for each primary datasets

e Muon EG : 1st leading muon pT > 17GeV/c and electron pT > 12GeV/c or

1st leading electron pT" > 17GeV/c and muon pT > 8GeV/c

8.3 Event Selection

To reduce background events, we need to apply particle selection and kinematic

event selection.
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8.3.1 Object selection

8.3.1.1 Muon
o pT' > 20GeV/c and |n| < 2.4

x?%/ndof< 10 for global muon fit

e >=1 hit(s) at muon chamber

e >=— 2 matched station

e > 5 Number of of valid hits at innter tracker

< 0.15 AfB correction applied relative isolation within a cone size 0.4

® dyy < 0.2cm and d, < 0.5cm with respect to the primary vertex to reduce
the muons which are come from pileup or noise.
8.3.1.2 Electron

e pT > 20GeV/c and |n| < 2.4 exclude 1.4442 < |Nsuper cluster] < 1.566 to avoid

crack region.

e cus based medium ID described in Tab.8.4

8.3.1.3 Jet
o pT' > 30GeV/c and |n| < 2.4
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Cut parameter barrel region endcap region
full5x5_sigmaletaleta < 0.0101 0.0283
abs(d Etaln) < 0.0103 0.00733

Table 8.4: Electron cut based medium ID

e Veto the ridiculous energy deposit jets like as only neutral or only charged

particles jets. Detail in Tab 8.5.

e Veto jets which are too close with isolated lepton. (AR < 0.4)

Cut parameter value

Neutral Hadron Fraction < 0.99

Neutral EM Fraction < 0.99
Number of Constituent >1

Charged Hadron Fraction for barrel region >0
Charged Constituents for barrel region >0
Charged EM Fraction for barrel region < 0.99

Table 8.5: Jet Loose ID

8.3.2 Kinematic selection

1. We skipped out if an event did not have 2 opposite electric charged leptons.
This cut can rule out ”Inclusive W” events from events. Also, we checked
an invariant mass of dilepton is larger than 20GeV/c? due to removal like as

prompt Jy and QCD resonance events.

2. The Drell-yan process is a major background of dilepton channel. We can
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reduce this process by the z mass veto cut which are dilepton’s invariant

mass cut around Z boson(91 + 15GeV/c?).

3. The number of jet is very important property of tt events. We required 2

jets at least. It can reduce diboson, drell-yan and single top process.

4. On tt events, two neutrinos are generated from W boson. It can not directly
measured but we can confirm the Missing ET for these neutrino. We used
MET > 40GeV cut for this analysis because we selected the lepton mini-

mum pT as 20GeV/c? because of the high level triggers(HLTS).

5. On this analysis, we need to find a b-tagged jet at least. Because, the b-

tagging efficiency is about 70%.[13] To require 2 b-jets is too tight for this

analysis.
Event selections Nb of MC events Expected Nb. of Events
(in thousands) for 16fb=1
tt — (W) (W=b) — (ITv +b) + (1" +b) 104,573 k k
Dilepton mass (M > 20 GeV) 16,989 k k
Z veto (My <76 GeV or My > 106 GeV) 12,401k k
Jet requirements ( Njes > 2 ) 8,759 k k
Missing Transverse Energy ( E7% > 40 GeV ) 6,519 k k
b-jet tagging ( Np_jers > 1) 5,410 k k

Table 8.6: Event Selection for dileptonic decay channel for ttbar signal sample.
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Dataset name Nb. of expected events Percentage (%)
tt — (W) (W=b) — (ITv +b) + (1" + b) ? 94.39
Single top ? 4.44
Drell-Yan + jets ? 1.02
W + jets ? 0.0
WW ? 0.12
WZ ? 0.02
77 ? 0.01

Table 8.7: The expected numbers of signal events and backgrounds after event
selection

8.4 Systematic Errors

The systematic errors are come from various limitation of measure using this method.

We can measure various errors and list up to Tab.8.8 for DO case.

e Choice of renormalization(ug) and factorization scale(urp) : urp and pp are
related to jet multiplicity. These parameter usually are handle by Q factor

where Q% = m?+ 3" (p2"*°")2. On this analysis, pp=pr=2Q or Q/2 are used.

e Hadronization model : On this error calculation, A PYTHIAS8 generator is
used for hadronization for ttbar sample. PYTHIAS8 generator is based on
Lund fragmentation model which is assumed string model between QCD par-
ticles. To calculate this error, we compared PYTHIAS dataset with Herwigpp

one.

e Underlying Event(Multi Parton Interaction only) : A different UE tune sam-
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ples is not generated now. So, we can only use tt no MPI sample to measure

MPI effect for mass measurement.

e Color reconnection : This error can affect to b fragmentation. So, it need to
measure to calculate systematic errors. We used a dedicated sample which

do not have color reconnection among QCD particles.

e Top Quark Pt : When someone measure differential ttbar production cross
section, they found pT spectrum was softer than estimated. We applied top
pT weight value to event-by-event but it has an uncertainty. So, we need to

compare top pT weighted one and not weighted sample.

e Jet energy scale and jet energy resolution : On this analysis, jet energy can
not affect directly to measure top quark mass. However, our selection for
tracks started from jet’s daughter. It means that the jet energy scale and
resolution can affect jet finding and also affect track looping. We check the

JES and JER separately by using up and down uncertainty case.

e Lepton energy scale : A lepton distribution between MC and real data always
can not agree. So, we need to apply the weight for each letpon’s pT and eta.
This weight can have an uncertainty because of energy resolution of pT. So,

we need to check lepton energy scale’s up and down uncertainties.
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Source Amy[GeV]
Theoretical uncertainties

pur/pup scales tt -2.97  5.05
Hadronization model 7.08
Underlying event 2.30

Color reconnection 1.00

Top quark pr -3.12

Total theoretical uncertainties -8.66  9.57

Experimental uncertainties

Jet energy scale 0.69 -0.17
Jet energy resolution 0.11 0.15
Lepton energy scale -0.50  0.52
Total experimental uncertainties -0.86  0.57
Total systematic uncertainties -8.69  9.57
Statistical uncertainties +5.73

Table 8.8: Systematic errors for DO case
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Figure 8.1: Reconstructed charmed meson mass distribution

8.5 Result

8.5.1 Fast Simulation result for toy 100fb~!

Before to measure top quark mass from Run2016 data, we studied fastSim simula-
tion using Delphes for 100 fb~ 1. We acquired invariant mass of lepton and charmed
meson. Detail for Fig8.1, Fig8.2, Fig8.3 and Fig8.4. Finally, we can acquired how

much sensitive for each meson from calibration curve. Please, see Fig8.5 for detail.

8.5.2 Full Simulation result for Run2016

For CMS Run2016 data, we can acquired the DO meson from Secondary vertex

from jet’s daughters.
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Conclusion

In summary, we measured the top quark mass using invariant mass of lepton and
charmed meson within b-jet. On fast simulation result with 100f6~1 13TeV toy
MC data, we acquired which meson is more sensitivity of top quark mass changes.
In short, M, j/, has a slope by 0.41 £0.2. It is a highest slope among mesons
which are researched. However, it has a large error bar due to statics. Instead of
J/¢, D° has completely opposite property. It has enough entries to draw shape
stably. However, it has very large combinatory background. So, the invariant mass
of lepton and DO distribution has a landau shape instead of gaussian. In addition,
D*(2010) is average between J/t¢» and D°. Using Run2016 15.9fb~1 13TeV data,
we got the top quark mass using invariant mass of lepton and D0 meson. J/v¢ and

D*(2010) can not be fitted stably due to lack of statics. The measured top quark
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mass is 180.69 £ 5.73 (stat.) T93 (syst.) GeV/c?. Tts value agrees already known
top quark mass. This method has a merit about the jet energy uncertainty. Its
value is about 0.8GeV/c?. However, it has a limitation about statics and system-
atic errors. We can’t not overcome about static errors but systematic errors can
be improved to study to remove combinatory background in order to increase a

slope of calibration curve.
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