SUMMARY

This is an example of using segabs.cls for writing SEG expanded abstracts.

INTRODUCTION

This is an introduction. \LaTeX{} is a powerful document typesetting system (Lamport, 1994). An excellent reference is (Kopka and Daly, 2004). The new segabs.cls class complies with the \LaTeX{}2e standard.

THEORY

This is another section.

Equations

Section headings should be capitalized. Subsection headings should only have the first letter of the first word capitalized.

Here are examples of equations involving vectors and tensors:

\[
\mathbf{R} = \begin{pmatrix} R_{XX} & R_{XY} \\ R_{XY} & R_{YY} \end{pmatrix} = \mathbf{P}_{M \rightarrow R} \mathbf{D} \mathbf{P}_{S \rightarrow M} \mathbf{S} ,
\]

(1)

and

\[
R_{j,m}(\omega) = \sum_{n=1}^{N} p_{j}^{(n)}(x_{R}) D_{j}^{(n)}(\omega) p_{m}^{(n)}(x_{S}) .
\]

(2)

Figure 1 shows what it is about.

Multiplot

Sometimes it is convenient to put two or more figures from different files in an array (see Figure 2). Individual plots are Figures 2a and 2b.

The first argument of the \texttt{multiplot} command specifies the number of plots per row.

Tables

The discussion is summarized in Table 1.
Table Example

<table>
<thead>
<tr>
<th>migration</th>
<th>$\omega \rightarrow k_z$</th>
<th>$k_z^2 + k - z^2 \cos^2 \psi = 4\omega^2 / \nu^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero-offset</td>
<td>$k_z \rightarrow \omega_0$</td>
<td>$k_z^2 + k_z^2 = 4\omega_0^2 / \nu^2$</td>
</tr>
<tr>
<td>diffraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMO+NMO</td>
<td>$\omega \rightarrow \omega_0$</td>
<td>$\frac{1}{4} v^2 k_z^2 \sin^2 \psi + \omega_0^2 \cos^2 \psi = \omega^2$</td>
</tr>
<tr>
<td>radial DMO</td>
<td>$\omega \rightarrow \omega_s$</td>
<td>$\frac{1}{4} v^2 k_z^2 \sin^2 \psi + \omega_s^2 = \omega^2$</td>
</tr>
<tr>
<td>radial NMO</td>
<td>$\omega_s \rightarrow \omega_0$</td>
<td>$\omega_0 \cos \psi = \omega_s$</td>
</tr>
</tbody>
</table>

Table 1: This table is specified in the document by \texttt{\tabl{example}}\{This caption.\}{...}.

ACKNOWLEDGMENTS

I wish to thank Ivan Pšenčík and Frédéric Billette for having names with non-English letters in them. I wish to thank Červený (2000) for providing an example of how to make a bib file that includes an author whose name begins with a non-English character and Forgues (1996) for providing both an example of referencing a Ph.D. thesis and yet more non-English characters.

APPENDIX A

APPENDIX EXAMPLE

According to the new SEG standard, appendices come before references.

\[
\frac{\partial U}{\partial z} = \left\{ \frac{1}{v^2} \left[\frac{\partial}{\partial t} \right]^2 + \frac{1}{v^2} \left[\frac{\partial}{\partial g} \right]^2 \right\} \frac{\partial U}{\partial t} \quad (A-1)
\]

It is important to get equation A-1 right.

APPENDIX B

ANOTHER APPENDIX

\[
\frac{\partial U}{\partial z} = \left\{ \frac{1}{v^2} \left[\frac{\partial}{\partial t} \right]^2 + \frac{1}{v^2} \left[\frac{\partial}{\partial s} \right]^2 \right\} \frac{\partial U}{\partial t} \quad (B-1)
\]

Too lazy to type a different equation but note the numeration.

The error comparison is provided in Figure B-1.
SEG abstract example

Figure B-1: This figure is specified in the document by `\plot*{errgrp}{width=0.8\textwidth}{This caption.}.`
SEG abstract example

APPENDIX C

THE SOURCE OF THE BIBLIOGRAPHY

@Book{lamport,
 author = {L[eslie] Lamport},
 title = {{\LaTeX}: A Document Preparation System},
 publisher = {Addison-Wesley},
 year = 1994
}

@Book{kopka,
 author = {H[elmut] Kopka and P[atrick] W[Daly]},
 title = {Guide to \LaTeX},
 publisher = {Addison-Wesley},
 year = 2004
}

@preamble{"\newcommand{\SortNoop}{[1]{}}"}

@Book{Cerveny,
 author = {V[C]erven\'y},
 title = {Seismic Ray Method},
 year = 2000,
 publisher = {Cambridge University Press}
}

@PHDTHESIS{forgues96,
 author = {E. Forgues},
 title = {Inversion linearis\'ee multi-param\'etres via la th\'eorie des rais},
 school = {Institut Fran\'cais du P\'etrole - University Paris VII},
 year = 1996
}
REFERENCES