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Abstract

This paper describes the mixtures-of-trees model, a probabilistic model for discrete mul-
tidimensional domains. Mixtures-of-trees generalize the probabilistic trees of Chow and
Liu (1968) in a different and complementary direction to that of Bayesian networks. We
present efficient algorithms for learning mixtures-of-trees models in maximum likelihood
and Bayesian frameworks. We also discuss additional efficiencies that can be obtained
when data are “sparse,” and we present data structures and algorithms that exploit such
sparseness. Experimental results demonstrate the performance of the model for both den-
sity estimation and classification. We also discuss the sense in which tree-based classifiers
perform an implicit form of feature selection, and demonstrate a resulting insensitivity to
irrelevant attributes.
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1. Introduction

Probabilistic inference has become a core technology in AI, largely due to developments
in graph-theoretic methods for the representation and manipulation of complex probability
distributions (Pearl, 1988). Whether in their guise as directed graphs (Bayesian networks)
or as undirected graphs (Markov random fields), probabilistic graphical models have a num-
ber of virtues as representations of uncertainty and as inference engines. Graphical models
allow a separation between qualitative, structural aspects of uncertain knowledge and the
quantitative, parametric aspects of uncertainty...
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Appendix A.

In this appendix we prove the following theorem from Section 6.2:
Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., u 6=
0 ⇒ v = w = 0 in a given dataset D). Let Nv0, Nw0 be the number of data points for which
v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0 ⇒ Iuv ≤ Iuw

with equality only if u is identically 0.
Proof. We use the notation:

Pv(i) =
N i

v

N
, i 6= 0; Pv0 ≡ Pv(0) = 1−

∑
i 6=0

Pv(i).

These values represent the (empirical) probabilities of v taking value i 6= 0 and 0 respec-
tively. Entropies will be denoted by H. We aim to show that ∂Iuv

∂Pv0
< 0....
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