

Sarah Wright

September 13, 2016

1. Use the formal definition of the limit of a function at a point to prove that the following holds:

$$\lim_{x \to 4} x^2 + x - 5$$

Proof. Fix an arbitrary $\epsilon > 0$.

We wish to determine a $\delta > 0$ such that when $0 < |x - 4| < \delta$, it must be true that $|f(x) - 15| < \epsilon$.

Choose $\delta = \min\left\{1, \frac{\epsilon}{10}\right\}.$ Scratch Work Now, suppose that $0 < |x - 4| < \delta$. Then, $|f(x) - 15| < \epsilon$ $|f(x) - 15| = |(x^2 + x - 5) - 15|$, by the definition of f, $|(x^2 + x - 5) - (15)| < \epsilon$ $= |x^2 + x - 15|$ $|x^2 + x - 20| < \epsilon$ = |(x-4)(x+5)| $|(x+5)(x-4)| < \epsilon$ = |x - 4||x + 5|, by properties of absolute value, $|(x-4)| \cdot |(x+5)| < \epsilon$ $<\delta \cdot |x+5|$, by the assumption $|x-4| < \delta$, $|x-4| < \frac{\epsilon}{|x+5|}$ $\leq \frac{\epsilon}{10}|x+5|$, since $\delta \leq \frac{\epsilon}{10}$, $=\frac{\epsilon}{10}|(x-4)+9|$ $\leq \frac{\epsilon}{10} (|x-4|+|9|)$, by properties of absolute value, $\delta = 1 \Longrightarrow |x-4| < 1$ -1 < x - 4 < 1 $<\frac{\epsilon}{10}(\delta+9)$, since $|x-4|<\delta$, 8 < x + 5 < 10 $\leq \frac{\epsilon}{10}(1+9)$, since $\delta \leq 1$, |x+5| < 10 $=\left(\frac{\epsilon}{10}\right)(10)=\epsilon$

All together, this shows that for any $\epsilon > 0$, if we choose $\delta = \min\left\{1, \frac{\epsilon}{10}\right\}$, then $0 \le |x-4| < \delta$ implies that $|f(x) - 15| < \epsilon$. Thus, $\lim_{x \to 4} x^2 + x - 5 = 15$.

1.5.15 Evaluate the given limits of the piecewise defined function f.

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < -1 \\ x^3 + 1 & \text{if } -1 \le x \le 1 \\ x^2 + 1 & \text{if } x > 1 \end{cases}$$

(a) $\lim_{x \to -1^-} f(x)$

Since we are evaluating the limit as x approaches -1 from the left, we need to consider the form of the function for values of x that are less than -1, $x^2 - 1$.

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} x^{2} - 1$$

= (-1)² - 1, by Theorem 2,
= 0.

(b) $\lim_{x \to -1^+} f(x)$

Since we are evaluating the limit as x approaches -1 from the right, we need to consider the form of the function for values of x that are greater than -1, $x^3 + 1$.

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x^3 + 1$$

= (-1)³ + 1, by Theorem 2,
= 0.

- (c) $\lim_{x \to -1} f(x)$ Since $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = 0$, $\lim_{x \to -1} f(x) = 0$ by Theorem 7.
- (d) f(-1)When x = -1, $f(x) = x^3 + 1$. So, $f(-1) = (-1)^3 + 1 = 0$.
- (e) $\lim_{x \to 1^-} f(x)$

Since we are evaluating the limit as x approaches 1 from the left, we need to consider the form of the function for values of x that are less than (but near) 1, $x^3 + 1$.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{3} + 1$$

= (1)³ + 1, by Theorem 2,
= 2.

(f) $\lim_{x \to 1^+} f(x)$

Since we are evaluating the limit as x approaches 1 from the right, we need to consider the form of the function for values of x that are greater than (but near) 1, $x^2 + 1$.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} x^{2} + 1$$

= (1)² + 1, by Theorem 2,
= 2.

- (g) $\lim_{x \to 1} f(x)$ Since $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 2$, $\lim_{x \to 1} f(x) = 2$ by Theorem 7.
- (h) f(1)When x = 1, $f(x) = x^3 + 1$. So, $f(1) = (1)^3 + 1 = 2$.

To help us visualize all of these limits, a graph of y = f(x) is provided below.

