Sample LATEX Document

Sarah Wright

September 13, 2016

1. Use the formal definition of the limit of a function at a point to prove that the following holds:

$$
\lim _{x \rightarrow 4} x^{2}+x-5
$$

Proof. Fix an arbitrary $\epsilon>0$.
We wish to determine a $\delta>0$ such that when $0<|x-4|<\delta$, it must be true that $|f(x)-15|<\epsilon$.

Choose $\delta=\min \left\{1, \frac{\epsilon}{10}\right\}$.

Scratch Work

Now, suppose that $0<|x-4|<\delta$. Then,
$|f(x)-15|=\left|\left(x^{2}+x-5\right)-15\right|$, by the definition of f,

$$
=\left|x^{2}+x-15\right|
$$

$$
=|(x-4)(x+5)|
$$

$$
<\delta \cdot|x+5|, \text { by the assumption }|x-4|<\delta
$$

$$
\leq \frac{\epsilon}{10}|x+5|, \text { since } \delta \leq \frac{\epsilon}{10}
$$

$$
\begin{aligned}
|f(x)-15| & <\epsilon \\
\left|\left(x^{2}+x-5\right)-(15)\right| & <\epsilon \\
\left|x^{2}+x-20\right| & <\epsilon \\
|(x+5)(x-4)| & <\epsilon \\
|(x-4)| \cdot|(x+5)| & <\epsilon \\
|x-4| & <\frac{\epsilon}{|x+5|}
\end{aligned}
$$

$$
=|(x-4)(x+5)| \quad|(x+5)(x-4)|<\epsilon
$$

$$
=|x-4||x+5|, \text { by properties of absolute value, } \quad|(x-4)| \cdot|(x+5)|<\epsilon
$$

$$
=\frac{\epsilon}{10}|(x-4)+9|
$$

$$
\leq \frac{\epsilon}{10}(|x-4|+|9|), \text { by properties of absolute value, } \quad \delta=1 \Longrightarrow|x-4|<1
$$

$$
\begin{array}{lr}
<\frac{\epsilon}{10}(\delta+9), \text { since }|x-4|<\delta, & -1<x-4<1 \\
\leq \frac{\epsilon}{10}(1+9), \text { since } \delta \leq 1, & 8<x+5<10 \\
\epsilon & |x+5|<10
\end{array}
$$

$$
=\left(\frac{\epsilon}{10}\right)(10)=\epsilon
$$

All together, this shows that for any $\epsilon>0$, if we choose $\delta=\min \left\{1, \frac{\epsilon}{10}\right\}$, then $0 \leq$ $|x-4|<\delta$ implies that $|f(x)-15|<\epsilon$. Thus, $\lim _{x \rightarrow 4} x^{2}+x-5=15$.
1.5.15 Evaluate the given limits of the piecewise defined function f.

$$
f(x)=\left\{\begin{array}{lll}
x^{2}-1 & \text { if } & x<-1 \\
x^{3}+1 & \text { if } & -1 \leq x \leq 1 \\
x^{2}+1 & \text { if } & x>1
\end{array}\right.
$$

(a) $\lim _{x \rightarrow-1^{-}} f(x)$

Since we are evaluating the limit as x approaches -1 from the left, we need to consider the form of the function for values of x that are less than $-1, x^{2}-1$.

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\lim _{x \rightarrow-1^{-}} x^{2}-1 \\
& =(-1)^{2}-1, \text { by Theorem } 2, \\
& =0
\end{aligned}
$$

(b) $\lim _{x \rightarrow-1^{+}} f(x)$

Since we are evaluating the limit as x approaches -1 from the right, we need to consider the form of the function for values of x that are greater than $-1, x^{3}+1$.

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-1^{+}} x^{3}+1 \\
& =(-1)^{3}+1, \text { by Theorem } 2, \\
& =0
\end{aligned}
$$

(c) $\lim _{x \rightarrow-1} f(x)$

Since $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=0, \lim _{x \rightarrow-1} f(x)=0$ by Theorem 7 .
(d) $f(-1)$

When $x=-1, f(x)=x^{3}+1$. So, $f(-1)=(-1)^{3}+1=0$.
(e) $\lim _{x \rightarrow 1^{-}} f(x)$

Since we are evaluating the limit as x approaches 1 from the left, we need to consider the form of the function for values of x that are less than (but near) 1 , $x^{3}+1$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} x^{3}+1 \\
& =(1)^{3}+1, \text { by Theorem } 2 \\
& =2
\end{aligned}
$$

(f) $\lim _{x \rightarrow 1^{+}} f(x)$

Since we are evaluating the limit as x approaches 1 from the right, we need to consider the form of the function for values of x that are greater than (but near) $1, x^{2}+1$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{+}} x^{2}+1 \\
& =(1)^{2}+1, \text { by Theorem } 2, \\
& =2 .
\end{aligned}
$$

(g) $\lim _{x \rightarrow 1} f(x)$

Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=2, \lim _{x \rightarrow 1} f(x)=2$ by Theorem 7 .
(h) $f(1)$

When $x=1, f(x)=x^{3}+1$. So, $f(1)=(1)^{3}+1=2$.

To help us visualize all of these limits, a graph of $y=f(x)$ is provided below.

