X. X. First author, X. Second author and X. Third author

1 First author address
2 Second author address
3 Third author address

The abstract text goes here. The abstract text goes here.

1. Insert A head here
This demo file is intended to serve as a “starter file” for rsproca journal papers produced under LaTeX using rsproca.cls v1.5e.

(a) Insert B head here
Subsection text here.

(i) Insert C head here
Subsubsection text here.

2. Equations
Sample equations.

\[\frac{\partial u(t, x)}{\partial t} = Au(t, x) \left(1 - \frac{u(t, x)}{K} \right) - B \frac{u(t - \tau, x)w(t, x)}{1 + Eu(t - \tau, x)}, \]

\[\frac{\partial w(t, x)}{\partial t} = \delta \frac{\partial^2 w(t, x)}{\partial x^2} - Cw(t, x) + D \frac{u(t - \tau, x)w(t, x)}{1 + Eu(t - \tau, x)}, \]

\[\begin{aligned}
\frac{dU}{dt} &= \alpha U(t)(\gamma - U(t)) - \frac{U(t - \tau)W(t)}{1 + U(t - \tau)}, \\
\frac{dW}{dt} &= -W(t) + \beta \frac{U(t - \tau)W(t)}{1 + U(t - \tau)}.
\end{aligned} \]

\[\begin{aligned}
\frac{\partial (F_1, F_2)}{\partial (c, \omega)}(c_0, \omega_0) &= \begin{bmatrix}
\frac{\partial F_1}{\partial c} & \frac{\partial F_1}{\partial \omega} \\
\frac{\partial F_2}{\partial c} & \frac{\partial F_2}{\partial \omega}
\end{bmatrix}(c_0, \omega_0) \\
&= -4c_0q\omega_0 - 4c_0\omega_0p^2 = -4c_0\omega_0(q + p^2) > 0.
\end{aligned} \]

© 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
3. Enunciations

Theorem 3.1. Assume that $\alpha > 0$, $\gamma > 1$, $\beta > \gamma^{1+1}$, γ^{-1}. Then there exists a small $\tau_1 > 0$, such that for $\tau \in (0, \tau_1)$, if c crosses $c(\tau)$ from the direction of to a small amplitude periodic traveling wave solution of (2.1), and the period of $\ddot{u}(s), \ddot{w}(s)$ is

$$\ddot{T}(c) = c \cdot \left[\frac{2\pi}{\omega(\tau)} + O(c - c(\tau)) \right].$$

Condition 3.1. From (0.8) and (2.10), it holds $\frac{d\omega}{d\tau} < 0$, $\frac{dc}{d\tau} < 0$ for $\tau \in [0, \tau_1)$. This fact yields that the system (2.1) with delay $\tau > 0$ has the periodic traveling waves for smaller wave speed c than that the system (2.1) with $\tau = 0$ does. That is, the delay perturbation stimulates an early occurrence of the traveling waves.

4. Figures & Tables

The output for figure is:

Figure 1. Insert figure caption here

The output for table is:

Table 1. An Example of a Table

<table>
<thead>
<tr>
<th>date</th>
<th>Dutch policy</th>
<th>date</th>
<th>European policy</th>
</tr>
</thead>
</table>

5. Conclusion

The conclusion text goes here.

Acknowledgment

Insert the Acknowledgment text here.

References