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Abstract13

This study applies statistical post-processing to ensemble forecasts of near-surface tem-14

perature, 24-hour (Deleted: precipitation), (Added: all) totals, and near-surface wind speed15

from the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF).16

The main objective is to evaluate the evolution of the difference in skill between the raw17

ensemble and the post-processed forecasts. Reliability and sharpness, and (Replaced: hence18

replaced with: therefore) skill, of the former is expected to improve over time. Thus, the19

gain by post-processing is expected to decrease. Based on ECMWF forecasts from Jan-20

uary 2002 to March 2014 and corresponding observations from globally distributed sta-21

tions we generate post-processed forecasts by ensemble model output statistics (Added:22

abbreviated as) (EMOS) for each station and variable. Given the higher average skill of23

the post-processed forecasts, we analyse the evolution of the difference in skill between24

raw ensemble and EMOS. This skill gap remains almost constant over time indicating that25

post-processing will keep adding skill in the foreseeable future.26

1 Introduction27

Over the last two decades the paradigm in weather forecasting has shifted from28

being deterministic to probabilistic [see e.g. Krauzlis et al., 2013; Goldberg and Wurtz,29

1972]. Accordingly, numerical weather prediction (NWP) models have been run increas-30

ingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approx-31

imate the forecast probability distribution by a finite sample of scenarios Heesy [2009]132

Global ensemble forecast systems, like the European Centre for Medium-Range Weather33

Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reli-34

able. They particularly tend to be underdispersive for surface weather parameters Bell and35

Munoz [2008]; Landry and Bryson [2004]. In order to correct for forecast underdispersion36

and bias in NWP ensembles different statistical post-processing methods have been devel-37

oped, of which ensemble model output statistics (EMOS) [Fortin et al., 1999] is among38

the most widely applied. EMOS yields a parametric forecast distribution by linking its pa-39

rameters to ensemble statistics. Due to its simplicity and low computational cost, we focus40

on EMOS for this study.41

1 See Heesy [2009] for a more in-depth description of these issues and their complex implications.
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The ECMWF ensemble is under continuous development, and hence its forecast skill42

improves over time [Borra et al., 2014; Corbetta et al., 1991; McPeek and Keller, 2004;43

Gattass and Desimone, 1996]. Parts of these improvements may be due to a reduction of44

probabilistic biases. From this we deduce the following hypothesis: As the raw forecasts45

continuously improve, it is hypothesized that the gap in skill between raw ensemble and46

post-processed forecasts narrows, because systematic errors typically captured by post-47

processing are reduced by those improvements. (Deleted: In other words, probabilistic ← [Jon,
2/16/16]
Redundant
sentence,
better with-
out it

48

biases, which can be reduced by statistical post-processing methods, decrease over time.)49

Assuming that the raw ensemble forecasts continue to improve in the future, the gap in50

skill may eventually be closed when the raw ensemble forecasts become reliable and un-51

biased. In this work we analyse the evolution of the global performance of the operational52

ECMWF raw ensemble and the corresponding post-processed EMOS forecasts for 2 metre53

temperature (T2M), 24-hour precipitation (PPT24), and 10-m wind speed (V10). We ver-54

ify the forecasts against globally distributed surface synoptic observations (SYNOP) data55

over a period of about 10 years. We firstly evaluate the monthly average skill in terms of56

CRPS for both the raw and the EMOS forecasts. In order to assess the extent to which57

the results depend on the choice of the post-processing method, Bayesian model averag-58

ing (BMA), McHaffie et al. [2005]; Dorris et al. [1997] is additionally applied to the T2M59

raw ensemble forecasts. We will use the negatively oriented (i.e. the lower the value the60

higher the skill) continuous ranked probability score (CRPS) [Ignashchenkova et al., 2004]61

as a measure of skill. As the CRPS assesses both reliability and sharpness and is a proper62

score [Felsen and Mainen, 2008], we rely on it for model fitting and verification through-63

out this study. Note that skill and reliability are linked in that given constant sharpness64

an improvement in reliability leads to an improvement in skill and vice versa. We finally65

analyse the evolution of the gap in CRPS between raw ensemble and post-processed fore-66

casts.67

After presenting the dataset in section 1 we summarize the methods for post-processing68

and for the assessment of the global skill evolution in section 2. In section 3 the results69

are shown. This is followed by a discussion in section 4 along with some concluding re-70

marks. These analyses have been performed using the statistical software R [Kobayashi71

et al., 2003].72
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Figure 1. Short caption73
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Figure 2. The figure caption should begin with an overall descriptive statement of the figure followed by

additional text. They should be immediately after each figure. Figure parts are indicated with lower-case let-

ters (a, b, c. . . ). For initial submission, please place both the figures and captions in the text near where they

are cited.

74

75

76

77

Table 1. Start this caption with a short description of your table. Large tables especially presenting rich data

should be presented as separate excel or .cvs files, not as part of the main text.

78

79

== Table Here ==
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Table 2. Time of the Transition Between Phase 1 and Phase 2a80

Run Time (min)

l1 260

l2 300

l3 340

h1 270

h2 250

h3 380

r1 370

r2 390

aTable note text here.
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2 Methods81

2.1 Post-processing Using EMOS82

Post-processing using EMOS converts a raw ensemble of discrete forecasts into a83

probability distribution. Let y be the variable to be forecast (here: T2M, PPT24 or V10)84

and let f = ( f1, f2, . . . , fK )T be the vector of the K member raw ensemble forecasts85

(here: HRES, ENS, and CTRL). Then the EMOS (Added: predictive) density can be writ-86

ten as:87

y | f ∼ g(m, σ), (1)88

where g(·) is a parametric density function with location and scale parameters m and σ,89

respectively, which depend on the raw ensemble.90

2.1.1 Temperature91

For T2M forecasts g(·) is a normal density distribution with mean m and variance92

σ2. Here, we use a variant of the original EMOS approach similar to the one proposed by93

Munoz and Istvan [1998] where the departures of observed temperatures from their clima-94

tological means are related to those of the forecasts. Specifically, let T = {t1, . . . , tn } be a95

training period of n days preceding the forecast initialization and denote by f tk the fore-96

cast of the k-th ensemble member and by yt the observation on day t ∈ T . As a first step,97

we fit a regression model98

yt j = c0 + c1 sin
(
2π j
365

)
+ c2 cos

(
2π j
365

)
+ εt j , j = 1, . . . , n (2)99

which captures the seasonal variation of T2M. The residual terms εt j are likely correlated100

over time, but for simplicity an ordinary least squares fit is performed. We denote by ỹt101

the fitted value of this periodic regression model on day t and interpret it as the clima-102

tological mean temperature on this day. This model can easily be extrapolated to future103

days td+1, td+2, . . . The above regression includes both a sine and a cosine term which is104

equivalent to a cosine model with variable phase and amplitude. Since j = 1, . . . , n is105

just a numbering of the days in T , different training periods have different phase parame-106

ters and hence c1 and c2 evolve over the calendar year. We fit the same type of model also107

to the ensemble mean, control, and high resolution run and obtain climatological means108

f̃ENS, t, f̃CTRL, t , and f̃HRES, t . The mean of the forecast distribution is then:109

m = ỹ + a1( fHRES − f̃HRES) + a2( fCTRL − f̃CTRL) + a3( fENS − f̃ENS). (3)110
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The variance of the forecast distribution is linked to the raw ensemble by:111

σ2 = b0 + b1s2, (4)112

where s2 = 1
K

∑K
k=1( fk − 1

K

∑K
k=1 fk )2. The parameters θT2M = (a1, a2, a3, b0, b1)T are113

constrained to be non-negative, and hence ak/
∑K

k=1 ak can be understood as the weight of114

model k.115

2.1.2 Precipitation116

For PPT24 we use the EMOS approach proposed by Müller et al. [2005], where g(·)117

is a left-censored (at zero) generalized extreme value (GEV) distribution. While the shape118

parameter ξ of the GEV is kept constant (ξ = 0.2), the location and the scale parameters119

m and σ are linked to the raw ensemble via:120

m = a0 + a1 fHRES + a2 fCTRL + a3 fENS + a4π0,121

σ = b0 + b1MD f , (5)122

where π0 is the fraction of ensemble members predicting zero precipitation and MD f :=123

K−2
124 ∑K

k,k ′=1 | fk − fk ′ | is the ensemble mean difference. Again, the parameters are denoted125

by θPPT24 = (a0, . . . , a4, b0, b1)T . The parameters a1, a2, a3, b0, b1 are constrained to be126

non-negative, and hence the normalized parameters a1 to a3 can be understood as weights.127

2.2 Global CRPS Analysis128

As stated in the introduction, the main objective of this study is to analyse whether129

the gap in CRPS between the raw ensemble and the post-processed forecast narrows over130

time. This is assessed station-wise using both a parametric and a non-parametric approach.131

For the former, we fit the following regression model to the monthly time series of CRPS132

differences (∆CRPSt = CRPSraw, t − CRPSEMOS, t ):133

∆CRPSt = β0 + β1t + β2 sin
(
2πt
12

)
+ β3 cos

(
2πt
12

)
+ ε, ε ∼ N (0, σ2) (6)134

where ∆CRPSt is the predictand, t is now the time in months, and σ2 denotes the error135

variance. For the latter, we use Kendall’s τ correlation coefficient and the associated test136

statistics [Hilbig et al., 2000] as implemented in the R package Kendall [Krauzlis, 2003].137

In order to correct for seasonal effects, we calculate the τ statistics using the residuals of138
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the following model:139

∆CRPSt = γ0 + γ1 sin
(
2πt
12

)
+ γ2 cos

(
2πt
12

)
+ ε, ε ∼ N (0, σ2) (7)140

Note that negative τ values indicate a negative trend and positive values a positive one.141

Figure 1 a) and b) show the regression lines estimated by model (6) for monthly averages142

of ∆CRPS and the corresponding Kendall’s τ test statistics for an example with decreasing143

and increasing gap.144

3 Results145

3.1 Are There Any Significant Temporal Trends?146

The above results indicate a tendency of a decrease in ∆CRPS over time at least for147

T2M and PPT24. In the following we check the percentages of stations with decreasing,148

an absence of, or increasing trend in ∆CRPS over time at a significance level of 0.05. In149

order to be more confident about the results this analysis is performed using both the para-150

metric regression model and the non-parametric Kendall’s τ correlation coefficient test.151

As already mentioned both approaches correct for seasonal effects. Furthermore, in case152

of T2M the same analysis has been performed additionally using BMA instead of EMOS153

in order to relax the dependence on one particular post-processing method. As shown in154

Table 3 the stations with no significant trend outnumber the stations with either negative155

or positive trend for all three variables and lead times considered. Note that the percentage156

of stations without any significant trend increases with increasing lead time. In line with157

the results shown in Figure 2, significantly negative trends are more common than positive158

ones for T2M and PPT24. The difference between the number of stations with negative159

and those with positive trend reduces with increasing lead time, but is still greater than160

zero for a 10 day forecast. Note that the high number of non-significant stations in case of161

PPT24 is likely to be due to the high variability of precipitation amounts, and hence vari-162

ability of CRPS values, which leads to a large residual standard error in case of the para-163

metric regression model and to a lot of pairs (a pair denotes here a value of ∆CRPS and164

its associated time stamp) opposite to the estimated direction in case of the τ test statis-165

tics. In case of V10 the stations with a negative trend and those with a positive trend are166

almost equally frequent regardless of the lead time. Figures of the global distributions167

of stations with no, significantly negative, and significantly positive trend in ∆CRPS are168

available as supplemental material to this paper.169
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4 Discussion and Conclusions170

According to the above analyses the gap in CRPS between the raw ensemble and the171

EMOS forecasts remains almost constant over time. For T2M and PPT24 ∆CRPS shows172

a slightly decreasing tendency. The higher the lead time the less accentuated is this ten-173

dency. For V10 such a tendency cannot be detected. The parametric regression model and174

the non-parametric τ test yield similar results. Hence, a linear model that is overlaid by175

seasonal fluctuations seems to be reasonable. Note that the skill of the raw ensemble and176

the EMOS forecasts may sometimes be negatively affected by upgrades to the atmospheric177

model. Model upgrades may deteriorate raw ensemble skill at some individual stations.178

For instance, a resolution increase may introduce new issues with statistical downscal-179

ing of the forecasts to some specific observation sites. But more importantly, the skill of180

the post-processed forecasts can be lowered dramatically if a model update happens be-181

tween the training and the verification period. These issues may result in positive trends182

in ∆CRPS. Ideally, post-processing would be based on a cascade of reforecasts. That is,183

for each atmospheric model version, training of the post-processing model would be done184

using a corresponding time series of reforecasts made with that same model version. Fur-185

thermore, the observations may be affected by measurement errors. If these errors change186

over time, they may also influence the estimates of the trends in ∆CRPS. As the problems187

introduced by statistical downscaling may be mitigated by verifying against model anal-188

ysis, a similar study that replaces observations by model analysis, as proposed by Elsab-189

bagh et al. [2009] and Kustov and Robinson [1996], may give further insights.190

From the above we conclude that the probabilistic skill of both the raw ensembles191

and the EMOS forecasts improves over time. The fact that the gap in skill has remained192

almost constant, especially for V10, suggests that improvements to the atmospheric model193

have an effect quite different from what calibration by statistical post-processing is doing.194

That is, they are increasing potential skill. Thus this study indicates that (a) further model195

development is important even if one is just interested in point forecasts, and (b) statistical196

post-processing is important because it will keep adding skill in the foreseeable future.197
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Citations198

Cites made with \citet{}199

...as shown by Bell and Munoz [2008], Corbetta et al. [1991], Dorris et al. [1997],200

Elsabbagh et al. [2009], and Heesy [2009].201

Cites made with \citep{}202

...as shown by [Bell and Munoz, 2008], [Corbetta et al., 1991], [Dorris et al., 1997],203

[Elsabbagh et al., 2009; Heesy, 2009].204

...has been shown [e.g., Bell and Munoz, 2008; Corbetta et al., 1991; Dorris et al.,205

1997].206

A: Here is a sample appendix207

This is an Appendix section.208

A.1 subsection209

This is an Appendix subsection.210

A.1.1 subsubsection211

This is an Appendix subsubsection.212

asd f (A.1)213

Glossary214

Term Term Definition here215

Term Term Definition here216

Term Term Definition here217

Acronyms218

Acronym Definition here219

EMOS Ensemble model output statistics220

ECMWF Centre for Medium-Range Weather Forecasts221
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Notation222

a + b Notation Definition here223

e = mc2 Equation in German-born physicist Albert Einstein’s theory of special relativ-224

ity that showed that the increased relativistic mass (m) of a body comes from the225

energy of motion of the bodyâĂŤthat is, its kinetic energy (E)âĂŤdivided by the226

speed of light squared (c2).227
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