Writing Articles for The Art, Science, and Engineering of
Programming

Tobias Pape?, Cristina V. Lopes®, and Robert Hirschfeld®

a Hasso Plattner Institute, University of Potsdam, Germany
b University of California, Irvine, USA

Abstract The Art, Science, and Engineering of Programming is a new journal created with
the goal of placing the wonderful art of programming in the map of scholarly works. Many
academic journals and conferences exist that publish research related to programming,
starting with programming languages, software engineering, and expanding to the whole
Computer Science field. Yet, many of us feel that, as the field of Computer Science expanded,
programming, in itself, has been neglected to a secondary role not worthy of scholarly
attention. That is a serious gap, as much of the progress in Computer Science lies on the basis
of computer programs, the people who write them, and the concepts and tools available to
them to express computational tasks.

The Art, Science, and Engineering of Programming aims at closing this gap by focusing
primarily on programming: the art itself (programming styles, pearls, models, languages),
the emerging science of understanding what works and what doesn’t work in general and in
specific contexts, as well as more established engineering and mathematical perspectives.

This is an example of and a guide to writing articles for The Art, Science, and Engineering
of Programming.

ACM CCS 2012
= General and reference » Computing standards, RFCs and guidelines;
= Applied computing - Publishing;

Keywords programming journal, paper formatting, submission preparation

The Art, Science, and Engineering of Programming

perspective The Art of Programming

Area of submission Social Coding

© Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld
@ @ @ This work is licensed under a “CC BY-ND 4.0” license.

Submitted to The Art, Science, and Engineering of Programming.

https://creativecommons.org/licenses/by-nd/4.0/deed.en

Writing for Programming

B} AGuided Tour

The content of a paper is its most important ingredient. That being said, papers
for The Art, Science, and Engineering of Programming should adhere to a common
style, which is achieved with the programming LaTeX class. You are to use this class
as outlined here when submitting articles to the journal. This document acts as an
example of what this can look like and a short references for all the required and
optional parts.

11 Document Parts

We have included a most minimal article in listing 1 that you can adapt to the concrete
work to be submitted! First, you have to select the programming class as in line 1. The
parameter english is for language selection (optional, but recommended). The other
parameter, submission, is crucial for the reviewing process and must be included for
submission. More information on document parameters can be found in section 4.1.
After that, wce recommend that you load the biblatex package. While it is perfectly
fine to use plain BibTeX, we recommend biblatex, as it has native Unicode support and
can handle urLs and pois better. In both cases, we have preloaded a bibliography
style.

At that point, you can load any LaTeX package you need. Note that we already
load some important packages with the programming class and that there are certain
packages that are not recommended or incompatible with this class. Please refer to
section 4.6 for information on which packages are recommended. After that, you start
the actual document with \begin{document}.

You have to provide details to your submission that will be used during the review
process. For that, use the paperdetails command and specify perspective and area of
your submission. For perspective, choose form one of the Art, theoretical or empirical
Science, or Engineering and provide it as argument to the perspective keyword; they
can be found in section 2.1. For area, specify an argument to the area keyword (in
braces). Find a list of suggested areas in section 2.2.

We need you to provide certain metadata which you can do with the following
commands, as form line 12. You can specify the title and maybe the subtitle with
\title (and \subtitle, respectively). Then please list all authors. For that, use one \author
command per author and give an affiliation for each with \affiliation. When several
consecutive authors share the same affiliation, you should only use one \affiliation
command after the last of them. More information can be found in section 4.2.

Please include one to five keywords, separated by commas, that are important to
your work with the \keywords command as in line 18. We kindly ask you to classify
your work using the ACM Computing Classification System2 Please visit the ACM’s
website and generate the TeX code that matches your classification. The code should
consist of a CCSXML environment and several \ccsdesc commands, as in lines 20 to 30.

'Please note that all article source must be UTF-8 encoded, no exceptions.
https://dl.acm.org/ccs/ccs.cfm.

https://dl.acm.org/ccs/ccs.cfm

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

Ml Listing1 A very minimal article.

\documentclass[english,submission]l{programming}
\usepackage[backend=biberl{biblatex} % Use Biblatex
\addbibresource{example.bib}

\begin{document}

\paperdetails{
perspective=engineering,
area={General—purpose programming}

}

\title{The importance of why and how to do work}

\author{Anna Author}

\affiliation{The Unseen University, Ankh—Morpork}

\author{Bert Betatester}

\affiliation{Carolingian Minuschool Academy, Bodoni, San Serriffe}

\keywords{paper, showcase, lorem ipsum}

\begin{CCSXML}

<€Cs2012>

<concept>

<concept_id>10002944.10011122.10003459</ concept_id>

<concept_desc>General and reference~Computing standards, RFCs and guidelines</concept_
— desc>

<concept_significance>300</concept_significance>

</concept>

</ccs2012>

\end{CCSXML}

\ccsdesc[300]{General and reference~Computing standards, RFCs and guidelines}
\maketitle
\begin{abstract}
This paper shows...
\end{abstract}
\section{Introduction}
The art of computer programming~\cite{DBLP:journals/cacm/Knuth7s}...

\section{...}

\acks
| want to thank

\printbibliography
\end{document}

Writing for Programming

With \maketitle and the abstract environment, you can produce the article’s title page.
Then you can start with your content. If applicable, you can put acknowledgements at
the end after an \acks command, as in line 42.

This should cover the basic usage.

1.2 Running LaTeX

This class has been tested with the popular LaTeX programs available. It should work
with pdfLaTeX, LualLaTeX, and XeLaTeX. We suggest that you use LuaLaTeX, which is
included in all major TeX system installations, has a good Unicode support, and is
well portable. Please do not use the LaTeX/dvips combination to produce output files.
To get all metadata right, several LaTeX runs will be necessary. Hence, a typical run
looks like this:

lualatex myarticle
biber myarticle

lualatex myarticle
lualatex myarticle

You should replace lualatex with the LaTeX program of your choice, and biber with
bibtex if you do not want to use Biblatex (or use Biblatex’s BibTeX backend).
Your pDF file for your article should then be ready for submission.

B} submission Classification

Almost anything about programming is in scope for The Art, Science, and Engineering
of Programming. However, you should classify your article according to the following
aspects.

21 Perspective

We accept descriptions of work under different perspectives:

The Art. This perspective is about knowledge and technical skills acquired through
practice and personal experiences. Examples include libraries, frameworks, lan-
guages, APIs, programming models and styles, programming pearls, and essays about
programming.

Science (theoretical). This perspective is about knowledge and technical skills
acquired through mathematical formalisms. Examples include formal programming
models and proofs.

Science (empirical). This perspective is about knowledge and technical skills acquired
through experiments and systematic observations. Examples include user studies and
programming-related data mining.

Engineering. This perspective is about knowledge and technical skills acquired
through designing and building large systems and through calculated application of
principles in building those systems. Examples include measurements of artifacts’
properties, development processes and tools, and quality assurance methods.

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

To classify your work as any of the above perspectives, please set the perspective
keyword of the \paperdetails command to one of the following values:
art for submissions concerning The Art (theart is a proper alias);

sciencetheoretical For submissions concerning Science (theoretical), with aliases sci-
encetheoretical, theoreticalscience, theoretical, science-theoretical, and theoretical-
science;

scienceempirical for submissions concerning Science (empirical), aliases are scienceem-
pirical, empiricalscience, empirical, science-empirical, and empirical-science; and

engineering for submissions concerning Engineering.

2.2 Area of Submission

Independent of the type of work, the journal accepts submissions covering several
expertise areas. Expertise areas include, but are not limited to:

» General-purpose programming

= Distributed systems programming

= Parallel and multi-core programming

= Graphics and GPU programming

= Security programming

= User interface programming

= Database programming

» Visual and live programming

= Data mining and machine learning programming, and for programming

= Interpreters, virtual machines and compilers

= Modeling and modularity

= Testing and debugging

» Program verification

= Programming education

» Programming environments

= Social coding

To specify the area of expertise for your work, please set the area keyword of the

\paperdetails command to one of the preceding suggested areas, or provide your own.
Please use curly braces {} around the value.

n Typosgraphical and Technical Aspects

We have carefully chosen the presentation for articles published in The Art, Science,
and Engineering of Programming to fit on-screen reading and occasional printouts. It
is important to maintain a uniform look of all articles appearing in the journal. We
kindly ask you therefore to not change the presentation. Most importantly,

Writing for Programming

= please do not change the font or the font size for that matter. The text font remains
fixed as Charter (in the XCharter variant) and emphasis font is Fira Sans. The only
exception is the typewriter font, where you can choose from three variants (please
refer to section 4.1). Moreover;
» please do not change the margins or the line spacing;
= please refrain from using the \sloppy command, especially for the whole document;
= please avoid the use of the [H] or [h!] modifiers for figures;
= please use a consistent formatting (for example, use the siunitx package [6].)
This class has been tested on several LaTeX systems. We suggest that you use an
up-to-date system, for example TeX Live? which is available for Linux, Windows, and
Apple systems, among others. We tested with the 2015 and 2016 systems and will
make sure that it will work with upcoming systems, too. Please first upgrade your
system if problems with this class should occur. Regarding the LaTeX system, please
keep in mind to
= use LaTeX packages only if required, as fewer packages lower the chance of conflicts
(refer to section 4.6 for details);
= keep the use of custom macros low to not interfere with provided packages and
use LaTeX commands to do so (for example, \newcommand and similar instead of
TeX’s \def);
watch out for unsuitable line- and pagebreaks;

= when using pixel graphics, provide at least 300 dpi imagery, PDF files preferred;
= minimize the use of LaTeX comments, especially via block constructs;

consult the [2tabu documentation [5] about outdated packages;
= provide pois for all your references, if possible.
We suggest the use of a spellchecker to avoid typos.

Detailed Reference
Several aspects of this class as outlined above provide for some fine tuning.
441 Class Options

As explained in section 1, submissions to the journal must use the submission package
option. For the accepted final, to-be-published version, this option should be omitted
or replaced by crc for “Camera-ready Copy”. Actually, both are shortcuts for the phase
keyword, which could be used, instead. Hence, the following statements in either
column are equivalent:

Shttps://www.tug.org/texlive/.

https://www.tug.org/texlive/

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

Final phase Submission phase
\documentclass[phase=finall{programming} \documentclass[phase=submission]{programming}
\documentclass[crc]{programming} \documentclass[submission]{programming}

\documentclass{programming}

Code Fonts The standard font for code, as selected with \texttt, \ttfamily, or a listing,
is set to be the same as the sans serif font, Fira Sans. This matches the rest of
the document style very well. However, it may be strictly necessary to have a non-
proportional (or monospaced) font for the typewriter style. We therefore provide a
class option code to change the typewriter font. It takes one the following values:

code=sf Sets the code font to the sans serif font (Fira Sans). This is the default. Aliases
for this option are code=sans and code=sansserif.

code=tt Sets the code font to Fira Sans’ monospaced equivalent, Fira Mono. Aliases
for this option are code=mono and code=monospace. This is the preferred choice if
monospaced typewriter font is necessary. Note that this font does not have italics.

Other Options All other options give in the \documentclass command are not pro-
cessed directly by the class but rather passed on to other packages as “global options”.
For example, the english option from the example above does not influence the
programming class directly, but rather will be picked up by Babel [2] to set up language
options.

4.2 Document Metadata

The presentation of the document metadata can be fine tuned, as well. Besides
the \title and \subtitle commands, there is the \titlerunning command to specify a
shorter title when the normal title does not fit into the page header. Similarly, the
\authorrunning command can be used to specify the presentation of the authors in the
header.

Sometime listing the affiliations of the authors can be tricky when they are shared.
An optional argument to the \author and \affiliation command can be used to associate
authors and affiliations explicitly. Four variants for affiliations are outlined in the
beginning of listing 2.

For the final publication, we ask you to provide a short information of each author,
typically a very short biography, and a photo. You can use the \authorinfo command
right after an \author command to associate that author information with an author.
See line 25 in listing 2 for example. The photo is given as optional argument as file
name in brackets (without file extension). Omitting the photo will produce a blank
space next to the author information. The actual information follows as an argument.
Note that the author’s name is prepended to the information automatically and is not
to be repeated.

An author’s email address can be given in either the affiliation or author information
block. Please use the \email command for that purpose.

Writing for Programming

M Listing2 Four ways to specify affiliations / Author information example / Sample publica-
tion paper details

% Independent affiliations

\author{Anna Author}

\affiliation{The Unseen University, Ankh—Morpork}

\author{Bert Betatester}

\affiliation{Carolingian Minuschool Academy, Bodoni, San Serriffe}

% Shared affiliations

\author{Anna Author}

\author{Bert Betatester}

\affiliation{Carolingian Minuschool Academy, Bodoni, San Serriffe}

% Explicit affiliations

\author[al{Anna Author}

\author[b]{Bert Betatester}

\author[al{Claire Cadence}

\affiliation[al{The Unseen University, Ankh—Morpork}
\affiliation[b]{Carolingian Minuschool Academy, Bodoni, San Serriffe}

% Mixed affiliations

\author[al{Anna Author}

\author[a,b]{Bert Betatester}

\affiliation[al{The Unseen University, Ankh—Morpork}
\affiliation[b]{Carolingian Minuschool Academy, Bodoni, San Serriffe}

% Author information

\author{Anna Author}

\authorinfolannal{is a researcher at the Unseen University in Ankh—Morpork and
a Ph\,D student to Rincewind. Contact her at
\email{anna.the.author@univ—unseen.edu.pratchett}}

\affiliation[a]{The Unseen University, Ankh—Morpork}

%% % %% %%% %% Sample publication paper details
\paperdetails{

submitted=2017—02—18,

published=2017—08—01,

year=2017,

volume=2,

issue=1,

articlenumber=4,

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

g(t)

B Figure1 A test figure

4.3 Paper Details

Besides specifying the perspective and area of the submission, the \paperdetails
command is also used to provide publication information for the final, camera-ready-
copy phase (class option phase=final). In this case, perspective and area are removed
from the title page and the Digital Object Identifier (po1), as well as the dates of
submission and publications are presented instead. The information necessary for this
is provided by the publisher after acceptance. It includes the following information:

vear The year of the articles publication.

volume The volume the article appears in.

issue The issue the article appears in.

articlenumber The number of the article within the volume.

submitted The date the article was submitted to (and received by) the publisher.
Please use an 1so date (YyYYY-MM-DD).

publisher The date the article was published and made public by the publisher. Please
use an 1so date (YYYY-MM-DD).

See the end of listing 2 for an example.
4.4 Figures, Tables, Listings

Sometimes it is necessary to pay special attention to the floating elements of your
document, that is figures, tables, listings, and similar. While it is tempting to force
those elements to the specific position where they are written down, this is not always
the best choice, especially since it can interrupt the reading flow. Therefore please
refrain form using the [h!] and [H] specifiers for such elements. If you must have the
element at the current position, it maybe is not a floating element, in the first place.
It is perfectly fine to use graphics without a \begin{figrue}...\end{figure} environment or
use a \begin{tabular}...\end{tabular} without an enclosing \begin{table}...\end{table}.

The caption position of a floating element should match its content. For figures,
graphs, graphics, or similar, please us captions below the imagery, as in figure 1. For
tables, listings, algorithms, or similar list-like content, please use captions above its
contents, as those elements are typically read from top to bottom. Find examples in
the listings already presented and table 1.

For tabular content, we suggest to avoid vertical lines altogether and keep hori-
zontal lines to a minimum. Refer to the booktabs package documentation for more
information [3]. Also, the threeparttable package is valuable if you need footnotes in
your table [1].

Writing for Programming

M Table1 Differences between things projected and things achieved

Part done Value Unit
Title yes 2.3456 dB
Abstract yes 10° kHz

Rest is not entirely true

Context yes 90.473 %
Problem no?

Solution yes 5642.5 MB
Implementation yes 1.2x1073 m?/s
Evaluation no

Related Work no

Conclusion yes 4955.3 /kg

2 Just a few things missing

4.5 Bibliography

As outlined, the programming class supports both plain BibTeX as well as the newer
Biblatex bibliography package to present your references. Please note that you may not
change the bibliography style, it is pre-selected by the class. It is a simple, numbered
style with all references sorted alphabetically. In text, it should look like this: [4].
Note that the reference has the por included. We would like to encourage you to
always provide the pois of the works you cite, if possible. However, please make sure
in your bibliography file, that the doi entry is a plain entry without a “resolver” (for
example, http://dx.doi.org/) prepended. A typical example for an entry format should
look like in listing 3. Please shorten neither names nor journal articles, if possible.
The bibliography commands for your article should look like this (for Biblatex and
plain BibTeX, respectively):
Biblatex Plain Bibtex
\documentclass{programming} \documentclass{programming}

\usepackage[backend=biberl{biblatex}
\addbibresource{example.bib}

\begin{document} \begin{document}
\printbibliography \bibliography{example}
\end{document} \end{document}

4.6 LaTeX Packages Considerations

The following packages are automatically loaded by the programming class and need
not to be loaded manually.

= accsupp = array = booktabs
= amsmath = atbegshi = calc
= amstext = babel = caption

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

Ml Listing3 A typical BibTeX entry for [4]

@article{DBLP:journals/cacm/Knuth7z,
Author = {Donald E. Knuth},
Doi = {101145/361604.361612},
Journal = {Communications of the {ACM}},
Number = {12},
Pages = {667—673},
Title = {{Computer Programming as an Art}},

Volume = {17},
Year = {1974}}

= colortbl = grfext subcaption
= comment = hypcap tabularx
= csquotes = hyperref textcase
= doclicense = hyperxmp textcomp
= expl3 = listings threeparttable
» FiraSans » mathdesign typearea
= fnpct = microtype url
» fontspec# » morewrites verbatim
= fontenc = multirow xcolor
= gettitlestring = relsize Xparse
= graphics = rotating Xspace
= graphicx = Siunitx Xunicode
The following packages must not be loaded.
= Sistyle = fancyhdr palatino
= Slunits = fancyheadings psfig
= aswide = fourier pslatex
= ay = geometry scrpage
= aecompl = glossary subfigure
= 3e = helvet subfig
= caption2 = isolatin
tienc
= courier = mathpple .
times
= doublespace = mathptmx
umlaut
= epsfig = mathptm .
n epsf = newtxmath utopia
zefonts
= euler = newtxtext

Additionally, any package that changes the font must not be loaded.

4LuaLaTeX/ XeLaTeX only

Writing for Programming

Acknowledgements We want to thank you for using this class to prepare articles for
The Art, Science, and Engineering of Programming.

References

[1] Donald Arseneau. Tables with captions and notes all the same width. CTAN:
macros/latex/contrib/threeparttable. June 13, 2003.

[2] Javier Bezos and Johannes L. Braams. Multilingual support for Plain TgX or BIgX.
CTAN:macros/latex/required/babel/base. Apr. 23, 2016.

[3] Danie Els and Simon Fear. Publication quality tables in BIgX. CTAN:macros/latex/
contrib/booktabs. Apr. 27, 2016.

[4] Donald E. Knuth. “Computer Programming as an Art”. In: Commun. ACM 17.12
(1974), pages 667—-673. DOI: 10.1145/361604.361612.

[5] Mark Trettin and Marc Ensenbach. Obsolete packages and commands. CTAN:
info/l2tabu. Feb. 3, 2016.

[6] Joseph Wright. A comprehensive (SI) units package. CTAN:macros/latex/contrib/
siunitx. Mar. 1, 2016.

“ A Famous Filler Text

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

http://ctan.org/tex-archive/macros/latex/contrib/threeparttable
http://ctan.org/tex-archive/macros/latex/contrib/threeparttable
http://ctan.org/tex-archive/macros/latex/required/babel/base
http://ctan.org/tex-archive/macros/latex/contrib/booktabs
http://ctan.org/tex-archive/macros/latex/contrib/booktabs
http://dx.doi.org/10.1145/361604.361612
http://ctan.org/tex-archive/info/l2tabu
http://ctan.org/tex-archive/info/l2tabu
http://ctan.org/tex-archive/macros/latex/contrib/siunitx
http://ctan.org/tex-archive/macros/latex/contrib/siunitx

Tobias Pape, Cristina V. Lopes, and Robert Hirschfeld

About the authors

Tobias Pape is the author of this LaTeX class. Contact him at
tobias.pape@hpi.uni-potsdam.de.

Cristina V. Lopes is associate editor for the first two issues of The
Art, Science, and Engineering of Programming. Contact her at
lopes@ics.uci.edu.

Robert Hirschfeld is chair of the AOSA steering committee. The
Art, Science, and Engineering of Programming is published by
AOSA. Contact Robert at hirschfeld@hpi.uni-potsdam.de.

mailto:tobias.pape@hpi.uni-potsdam.de
mailto:lopes@ics.uci.edu
mailto:hirschfeld@hpi.uni-potsdam.de

	1 A Guided Tour
	1.1 Document Parts
	1.2 Running LaTeX

	2 Submission Classification
	2.1 Perspective
	2.2 Area of Submission

	3 Typographical and Technical Aspects
	4 Detailed Reference
	4.1 Class Options
	4.2 Document Metadata
	4.3 Paper Details
	4.4 Figures, Tables, Listings
	4.5 Bibliography
	4.6 LaTeX Packages Considerations

	A A Famous Filler Text
	About the authors

