THE ADDITION FORMULAS FOR THE HYPERBOLIC SINE AND COSINE FUNCTIONS VIA LINEAR ALGEBRA

DAVID RADCLIFFE

Abstract

We present a geometric proof of the addition formulas for the hyperbolic sine and cosine functions, using elementary properties of linear transformations.

1. Introduction

By analogy with the unit circle, the unit hyperbola is the set of points in the plane satisfying the equation $x^{2}-y^{2}=1$. The hyperbola is not connected - it has two branches. The right branch $(x>0)$ is parameterized by $x=\cosh t$ and $y=\sinh t$ for $t \in \mathbb{R}$.

A hyperbolic sector is the curvilinear triangular region bounded by an arc of the hyperbola and by two line segments from the origin to the endpoints of the arc. If $t>0$ then the area of the hyperbolic sector bounded by the arc from $(1,0)$ to $(\cosh t, \sinh t)$ is $t / 2$. This fact about hyperbolic sectors provides a geometric definition of the hyperbolic sine and cosine functions.

The hyperbolic sine and cosine functions satisfy addition rules that are strikingly similar to the analogous formulas for sine and cosine.

$$
\begin{aligned}
\cosh (s+t) & =\cosh s \cosh t+\sinh s \sinh t \\
\sinh (s+t) & =\sinh s \cosh t+\cosh s \sinh t
\end{aligned}
$$

We will prove these formulas under the assumption that s and t are positive, although they are in fact valid for all real values of s and t.

2. Proof

Let s and t be positive real numbers. The linear transformation

$$
T(x, y)=(x \cosh t+y \sinh t, x \sinh t+y \cosh t)
$$

preserves the right branch of the unit hyperbola

$$
x^{2}-y^{2}=1
$$

and it preserves areas since $\operatorname{det} T=1$.
Let A be the hyperbolic sector bounded by the arc from $(1,0)$ to $(\cosh s, \sinh s)$, and let B be the hyperbolic sector bounded by the arc from $(1,0)$ to $(\cosh t, \sinh t)$. Note that A has area $s / 2$, and B has area $t / 2$.

The image $A^{\prime}:=T(A)$ is a hyperbolic sector since T preserves the right branch of the unit hyperbola; and it has area $s / 2$ since T preserves areas. A^{\prime} is bounded by the arc from $T(1,0)=(\cosh t, \sinh t)$ to

$$
T(\cosh s, \sinh s)=(\cosh s \cosh t+\sinh s \sinh t, \sinh s \sinh t+\cosh s \cosh t)
$$

Now, $A^{\prime} \cup B$ is a hyperbolic sector, bounded by the arc from $(1,0)$ to

$$
(\cosh s \cosh t+\sinh s \sinh t, \cosh s \cosh t+\sinh s \sinh t)
$$

Since the area of $A^{\prime} \cup B$ is $(s+t) / 2$, the upper endpoint can be expressed as

$$
(\cosh (s+t), \sinh (s+t))
$$

Therefore,

$$
\cosh (s+t)=\cosh (s) \cosh (t)+\sinh (s) \sinh (t)
$$

and

$$
\sinh (s+t)=\sinh (s) \sinh (t)+\cosh (s) \cosh (t)
$$

