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Abstract. In this paper described numerical expansion of natural-valued

power function xn, in point x = x0, where n, x0 - positive integers. Applying

numerical methods, the calculus of finite differences, particular pattern, that
is sequence A287326 in OEIS, which shows the expansion of perfect cube n as

row sum over k, 0 ≤ k ≤ n− 1 is generalized, obtained results are applied to

show expansion of monomial n2m+1, m = 0, 1, 2, ...,N. Additionally, relation
between Faulhaber’s sum

∑
nm and finite differences of power are shown in

section 4.
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1. Introduction and main results

In this paper particular pattern, that is triangle A287326 in OEIS, [11], which
shows necessary items to expand perfect cube n as row sum is generalized and
obtained results are applied on expansion of monomial f(n) = nm, (n,m) ∈ N.
The coefficient M1(n, k) is k -th item of n-th row of triangle A287326, such that
sum of the n-th row of A287326 over 0 ≤ k ≤ n−1 is perfect cube. First, let review
and basically describe Newton’s Binomial Theorem, since our coefficient M1(n, k)
is derived from finite difference of perfect cubes, which is taken regarding Binomial
expansion. In elementary algebra, the Binomial theorem describes the algebraic
expansion of powers of a binomial. The theorem describes expanding of the power
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of (x + y)n into a sum involving terms of the form axbyc where the exponents b
and c are nonnegative integers with b + c = n, and the coefficient a of each term is
a specific positive integer depending on n and b. The coefficient a in the term of
axbyc is known as the Binomial coefficient. The main properties of the Binomial
Theorem are next

Properties 1.1. Binomial Theorem properties

(1) The powers of x go down until it reaches x0 = 1 starting value is n (the n
in (x + y)n)

(2) The powers of y go up from 0 (y0 = 1) until it reaches n (also n in (x+y)n)
(3) The n-th row of the Pascal’s Triangle (see [1], [12]) will be the coefficients

of the expanded binomial.
(4) For each line, the number of products (i.e. the sum of the coefficients) is

equal to x + 1
(5) For each line, the number of product groups is equal to 2n

According to the Binomial theorem, it is possible to expand any power of x + y
into a sum involving Binomial coefficients

(1.2) (x + y)n =

n∑
k=0

(
n

k

)
xn−kyk

Let expand monomial f(x) = xn, where x and n are positive integers, applying a
finite difference operator

Lemma 1.3. Power function could be represented as discrete integral of its first
order finite difference

xn =

x−1∑
k=0

nkn−1h +

(
n

2

)
kn−2h2 + · · ·+

(
n

n− 1

)
khn−1 + hn︸ ︷︷ ︸

∆h[xn]=(x+h)n−xn

=

x−1∑
j=0

n∑
k=1

(
n

k

)
jn−khk, x, n ∈ N, h ∈ R

Or, by means of Fundamental Theorem of Calculus

xn =

x∫
0

ntn−1dt =

x−1∑
k=0

∫ k+1

k

ntn−1dt =

x−1∑
k=0

(k + 1)n − kn

Let describe the derivation of the sequence A287326 in OEIS, which shows the
expansion of perfect cube n as row sum over k, 0 ≤ k ≤ n − 1. First, review a

https://oeis.org/A287326
https://oeis.org/
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difference table of perfect cubes ([4], eq. 7)

(1.4)

n ∆0(n3) ∆1(n3) ∆2(n3) ∆3(n3)
0 0 1 6 6
1 1 7 12 6
2 8 19 18 6
3 27 37 24 6
4 64 61 30 6
5 125 91 36 6
6 216 127 42 6
7 343 169 48 6
8 512 217 54
9 729 271
10 1000

Table 1: Difference table of perfect cubes n, 0 ≤ n ≤ 10 of order k, 0 ≤ k ≤ 3.

Note that increment h is set to be h = 1 and k > 2-order difference is taken
regarding to [8], [6]. Reviewing Figure (1.4), we have noticed that

∆(03) = 1 + 3! · 0(1.5)

∆(13) = 1 + 3! · 0 + 3! · 1
∆(23) = 1 + 3! · 0 + 3! · 1 + 3! · 2
∆(33) = 1 + 3! · 0 + 3! · 1 + 3! · 2 + 3! · 3

...

∆(n3) = 1 + 3! · 0 + 3! · 1 + 3! · 2 + 3! · 3 + · · ·+ 3! · n
Also, another interesting thing was observed, according to Donald Knuth, the per-
fect cube n is

(1.6) n3 = 6

(
n + 1

3

)
+

(
n

1

)
Returning to expression (1.5), we can find that

(1.7) ∆(n3) = 6

(
n + 1

2

)
+

(
n

0

)
Then

(1.8) {∆2(n3)}tn=0 =

6

(
n + 1

1

)
+

(
n

−1

)
︸ ︷︷ ︸

=0


t

n=0

= {6, 12, 18, 24, ..., 6t}

which fit according to ∆2(n3) values from Figure (1.4). Therefore, we represent
perfect cube n as

(1.9) n3 = (1 + 3! · 0) + (1 + 3! · 0 + 3! · 1) + · · ·+ (1 + 3! · 0 + · · ·+ 3! · (n− 1))

Generalizing above expression, we have

(1.10) n3 = n + (n− 0) · 3! · 0 + (n− 1) · 3! · 1 + · · ·+ (n− (n− 1)) · 3! · (n− 1)
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Provided that n is natural. Now we apply a compact sigma notation on (1.10),
hereby

(1.11) n3 = n +

n−1∑
k=0

3! · nk − 3! · k2

As sum
∑n−1

k=0 3! · nk − 3! · k2 consists of n terms, we have right to move n from
(1.11) under sigma notation, we get

(1.12) n3 =

n−1∑
k=0

3! · nk − 3! · k2 + 1

Property 1.13. Let be a sets A(n) := {1, 2, . . . , n}, B(n) := {0, 1, . . . , n},
C(n) := {0, 1, . . . , n− 1}, let be expression (1.12) defined as

T (n, C(n)) :=
∑

k∈C(n)

3! · nk − 3! · k2 + 1

where x is natural-valued variable and C(n) is iteration set of (1.12), then we have
equality

(1.14) T (n, A(n)) = T (n, C(n))

Let review and define expression (1.10) as

U(n, C(n)) := n + 3! ·
∑

k∈C(n)

nk − k2

then

(1.15) U(n, A(n)) = U(n, B(n)) = U(n, C(n))

Other words, changing of iteration sets of(1.10) and (1.12) by A(n), B(n), C(n)
and A(n), C(n), respectively, doesn’t change resulting value for each natural x.

Proof. Let be a plot y(n, k) = 3! · nk− 3! · k2 + 1, k ∈ R, 0 ≤ k ≤ 10, given n = 10
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Figure 2. Plot of y(n, k) = 3! · nk − 3! · k2 + 1, k ∈ R, 0 ≤ k ≤ n, where n = 10.
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Obviously, being a parabolic function, it’s symmetrical over n
2 , hence equivalent

T (n, A(n)) = T (n, C(n)) follows. Reviewing (1.10) and denote u(n, t) = n2t −
t2, we can conclude, that u(n, 0) = u(n, n) = 0, then equality of U(n, A(n)) =
U(n, B(n)) = U(n, C(n)) immediately follows. This completes the proof. �

Review above property (1.13). Let be an example of triangle built using

(1.16) y(n, k) = 3! · nk − 3! · k2 + 1, 0 ≤ k ≤ n

over n from 0 to n = 4, where n denotes corresponding row and k shows the item
of row n.

(1.17)

Row 0: 1

Row 1: 1 1

Row 2: 1 7 1

Row 3: 1 13 13 1

Row 4: 1 19 25 19 1

Figure 3. Triangle generated by (1.16) from 0 to n = 4, sequence A287326 in
OEIS, [11].

Note that n-th row sum of Triangle (1.17) over 0 ≤ k ≤ n − 1 returns perfect
cube n. We can see that each row with respect to variable n = 0, 1, 2, 3, 4, ...,
has Binomial distribution of row terms. One could compare Triangle (1.17) with
Pascal’s triangle [1], [12]

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Figure 4. Pascal’s triangle up to forth row, sequence A007318 in OEIS.

1.1. Properties of Triangle (1.17) and other expansions. Review the triangle
(1.17), define the k-th, 0 ≤ k ≤ n, item of n-th row of triangle as

Definition 1.18.

(1.19) M1(n, k) := 3! · nk − 3! · k2 + 1 = 6(n− k)k + 1, 0 ≤ k ≤ n

Let us approach to show a few properties of triangle (1.17) and M1(n, k).

Properties 1.20. Properties of triangle (1.17).

(1) Summation of items M1(n, k) of n-th row of triangle (1.17) over k from 0
to n− 1 returns perfect cube n as binomial of the form

(1.21)

n−1∑
k=0

M1(n, k) = A0,nn−B0,n = n3, n ≥ 0

https://oeis.org/A287326
https://oeis.org/
http://oeis.org/A007318
https://oeis.org/


6 KOLOSOV PETRO

Since the property (1.14) holds, (1.21) could be rewritten as

(1.22)

n∑
k=1

M1(n, k) = A1,nn−B1,n = n3, n ≥ 0

where A0,1,n and B0,1,n - integers depending on variable n ∈ N and on

sets U(n), S(n), respectively. Note that A0,nn 6= A1,nn, B0,n 6= B1,n

(2) Relation between A0,n and A1,n

A0,n+1 = A1,n, n ≥ 1

.
(3) Summation of items M1(n, k) of n-th row of triangle (1.17) over k from 0

to n returns n3 + 1

(1.23)

n∑
k=0

M1(n, k) = n3 + 1

(4) First item of each row’s number corresponding to central polygonal numbers

sequence a(n) = n2+n+2
2 (sequence A000124 in OEIS, [13]) returns finite

difference of consequent perfect cubes. For example, let be a k-th row of

triangle (1.17), such that k = n2+n+2
2 , n = 0, 1, 2, ..., then item

(1.24) M1

(
n2 + n + 2

2
, 1

)
= (n + 1)3 − n3, n ≥ 0

(5) Items of (1.17) have Binomial distribution over rows.
(6) The linear recurrence, for any k and n > 0

(1.25) 2M1(n, k) = M1(n + 1, k) + M1(n− 1, k)

This linear recurrence is direct result of second order binomial transform of
M1(n, k) over n.

(7) Linear recurrence, for each n > k

(1.26) 2M1(n, k) = M1(2n− k, k) + M1(2n− k, 0)

(8) From (1.24) follows that

(1.27)

n−1∑
k=0

M1(n, k) =

n−1∑
k=0

M1

(
n2 + n + 2

2
, 1

)
= n3, n ≥ 0

(9) Triangle (1.17) is symmetric, i.e

(1.28) M1(n, k) = M1(n, n− k)

As its noticed in (1.21), summation of each n-th row of Triangle (1.17) from 0
to n− 1 returns perfect cube n, then, by properties (1.24), (1.25), (1.26), for each
positive integer n the nm, m = 0, 1, 2, ... could be found via multiplication of each

https://oeis.org/A000124
https://oeis.org/


SERIES REPRESENTATION OF POWER FUNCTION 7

term of (1.21) by nm−3

nm =

n−1∑
k=0

M1(n, k)nm−3 =
1

2

n−1∑
k=0

[M1(n + 1, k) + M1(n− 1, k)]nm−3(1.29)

=

n−1∑
k=0

1

2
[M1(2n− k, k) + M1(2n− k, 0)]nm−3

=

n−1∑
k=0

1

2
M1

(
n2 + n + 2

2
, 1

)
nm−3

=

n−1∑
k=0

1

2

[
M1

(
n2 + n

2
, 1

)
+ M1

(
n2 + n + 4

2
, 1

)]
nm−3

=

n−1∑
k=0

1

2

[
M1

((
m + 1

2

)
, 1

)
+ M1

((
m + 1

2

)
+

(
2

1

)
, 1

)]
nm−3

To show other representation of monomial nm, m = 0, 1, 2, ..., review (1.11), let
move n in n+ 3!

∑
k nk− k2 under the sum operator and change iteration set from

{0, n− 1} to {1, n− 1}, then we get

(1.30) n3 =

n−1∑
k=1

3! · nk − 3! · k2 +
n

(n− 1)
, n 6= 1

Review right part of (1.30), let the term n
n−1 be written as n

n−1 = n+1−1
n−1 = 1+ 1

n−1 ,

given the power m > 3, multiplying each term of (1.30) by nm−3 we can observe
that

(1.31) nm − 1 =

n−1∑
k=1

M1(n, k)nm−3 + nm−4 + nm−5 + · · ·+ n + 1

Applying properties (1.24), (1.25), (1.26), we can rewrite (1.31) as

nm − 1 =

n−1∑
k=1

1

2
[M1(2n− k, k) + M1(2n− k, 0)]nm−3 + nm−4 + · · ·+ n + 1

=

n−1∑
k=1

1

2
[M1(n + 1, k) + M1(n− 1, k)]nm−3 + nm−4 + · · ·+ n + 1(1.32)

=

n−1∑
m=0

1

2

[
M1

(
n2+n

2 , 1
)

+ M1

(
n2+n+4

2 , 1
)]

nm−3 + nm−4 + · · ·+ n + 1

=

n−1∑
k=1

M1

(
n2+n+2

2 , 1
)
nm−3 + nm−4 + · · ·+ 1

Review (1.31), let move 1 from left part of (1.31) under sum operator in the right
part, therefore we add a term 1

n−1 to initial function M1(n, k)nm−3+nm−4+nm−5+

· · ·+n+ 1. By means of expansion 1
1−n = − 1

n−1 = 1 +n+n2 +n3 + · · · , the (1.31)
could be rewritten respectively

(1.33) nm =

n−1∑
m=1

M1(n,m)nm−3 + nm−4 + · · ·+ n + 1− 1− n2 − n3 − · · ·
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Particularizing (1.33) we have

nm =

n−1∑
m=1

[M1(n,m)− 1]nm−3 − nm−2 − nm−1 − · · ·(1.34)

=

n−1∑
m=1

[
M1

(
n2 + n + 2

2
, 1

)
− 1

]
nm−3 − nm−2 − nm−1 − · · ·

Hereby, the follow question is stated

Question 1.35. Has the Triangle (1.17) any analogs in order to receive monomial
xt t > 3 as row sum? Is it exist Mv(n, k), v 6= 1, such that

n−1∑
k=0

Mv(n, k) = nt, v 6= t ?

2. Generalization of sequence A287326

Considering the OEIS sequences A300656 and A300785, (question 1.31) can be
answered positively, since the sequences A300656 and A300785 are analogs of Tri-
angle (1.17), that show fifth and seventh powers as row sums. To generalize our
sequence A287326 for each odd power 2m + 1, m = 0, 1, 2... we have to review the
generating formulas of sequences A287326, A300656, A300785 as

(2.1)

n−1∑
k=0

m∑
j=0

Am,j(n− k)jkj = n2m+1, m = 1, 2, 3

Where Am,j is unknown. For example, generating functions of our sequences
A287326, A300656, A300785 are

(2.2)


6k(n− k) + 1, for A287326

30k2(n− k)2 + 1, for A300656

140k3(n− k)3 − 14k(n− k) + 1, for A300785

Reviewing (2.2) we observe that coefficients are {6, 1}, {30, 0, 1}, {140, 0,−14, 1} in
each generating function of A287326, A300656, A300785, respectively. To generalize
above results over odd powers 2m + 1, m = 0, 1, 2... one has to solve the system of
equations. Define the part of (2.1) as

(2.3) Mm(n, k) :=
m∑
j=0

Am,j(n− k)jkj , m ≥ 0

Hereby let be a system

(2.4)



Mm(1, 0) = 12m+1

Mm(2, 0) + Mm(2, 1) = 22m+1

Mm(3, 0) + Mm(3, 1) + Mm(3, 2) = 32m+1

...

Mm(t, 0) + Mm(t, 1) + · · ·+ Mm(t, t− 1) = t2m+1, t ≥ m

https://oeis.org/A287326
https://oeis.org/A300656
https://oeis.org/A300785
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Solving system (2.4) we receive a set of coefficients {Am,0, . . . , Am,m} for each
particular t, such that (2.1) holds. List of solutions1 of system (2.4) is split and
assigned to OEIS under the numbers A302971 (numerators of Am,j) and A304042
(denominators of Am,j). To reach recurrent formula of Am,j , first let fix the unused
values Am,j = 0, for j < 0 or j > m, so we don’t need to care about the summation
range for j, then by expanding (n− k)j and using Faulhaber’s formula, we get

n−1∑
k=0

(n− k)jkj =

n−1∑
k=0

∞∑
i

(
j

i

)
nj−i(−1)iki+j(2.5)

=

∞∑
i

(
j

i

)
nj−i (−1)i

i + j + 1

[ ∞∑
t

(
i + j + 1

t

)
Btn

i+j+1−t −Bi+j+1

]

=

∞∑
i,t

(
j

i

)
(−1)i

i + j + 1

(
i + j + 1

t

)
Btn

2j+1−t −
∞∑
i

(
j

i

)
(−1)i

i + j + 1
Bi+j+1n

j−i

where Bt are Bernoulli numbers [14]. Now, we notice that

(2.6)

∞∑
i

(
j

i

)
(−1)i

i + j + 1

(
i + j + 1

t

)
=


1

(2j+1)(2j
j )

, if t = 0;

(−1)j

t

(
j

2j−t+1

)
, if t > 0

In particular, the last sum is zero for 0 < t ≤ j. To combine or cancel identical
terms across the two sums from right part of (2.5) more easily we introducing
` = 2j + 1− t and ` = j − i, respectively, we get

n−1∑
k=0

(n− k)jkj =
1

(2j + 1)
(

2j
j

)n2j+1 +

∞∑
`=−∞

(−1)j

2j + 1− `

(
j

`

)
B2j+1−`n

`(2.7)

−
∞∑

`=−∞

(
j

`

)
(−1)j−`

2j + 1− `
B2j+1−`n

`

=
1

(2j + 1)
(

2j
j

)n2j+1 + 2

∞∑
odd `

(−1)j

2j + 1− `

(
j

`

)
B2j+1−`n

`.

Note that binomial coefficient is defined as(
n

k

)
=

{
n

k!(n−k)! , if 0 ≤ k ≤ n;

0, otherwise

Therefore, we don’t use strict limits on sums of above derivation as it’s much easier
to review each sum as summing from −∞ to +∞ (unless specified otherwise), where
only a finite number of terms are nonzero. Now, using the definition of Am,j we
obtain the following identity for polynomials in n

∞∑
j

Am,j
1

(2j + 1)
(

2j
j

)n2j+1 + 2

∞∑
j, odd `

Am,j

(
j

`

)
(−1)j

2j + 1− `
B2j+1−`n

`(2.8)

≡ n2m+1

1One can produce a list of solutions of system (2.4) up to t = 11 using Mathematica code
solutions system 2 4.txt, [24].

https://oeis.org/A302971
https://oeis.org/A304042
https://kolosovpetro.github.io/mathematica_codes/solutions_system_2_4.txt
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Taking the coefficient of n2m+1 in above expression, we get Am,m = (2m + 1)
(

2m
m

)
,

and taking the coefficient of x2d+1 for an integer d in the range m/2 ≤ d < m we
get Am,d = 0. Taking the coefficient of n2d+1 in (2.8) for m/4 ≤ d < m/2 , we get

(2.9) Am,d
1

(2d + 1)
(

2d
d

) + 2(2m + 1)

(
2m

m

)(
m

2d + 1

)
(−1)m

2m− 2d
B2m−2d = 0,

i.e

(2.10) Am,d = (−1)m−1 (2m + 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d.

Continue similarly, we can express Am,j for each integer j in range m/2s+1 ≤
j < m/2s (iterating consecutively s = 1, 2, ...) via previously determined values of
Am,d, d < j as follows

(2.11) Am,j = (2j + 1)

(
2j

j

) m∑
d=2j+1

Am,d

(
d

2j + 1

)
(−1)d−1

d− j
B2d−2j .

The same formula holds also for d = 0. Hereby, we have shown that (2.1) holds for
each m ≥ 0.

Definition 2.12. We define here a generalized sequence of coefficients Am,j , such

that
∑n−1

k=0

∑m
j=0 Am,j(n− k)jkj = n2m+1, n ≥ 0, m = 0, 1, 2, ...

Am,j :=


0, if j < 0 or j > m

(2j + 1)
(

2j
j

)∑m
d=2j+1 Am,d

(
d

2j+1

) (−1)d−1

d−j B2d−2j , if 0 ≤ j < m

(2j + 1)
(

2j
j

)
, if j = m

First five rows of triangle generated by Am,j are

(2.13)

1

1 6

1 0 30

1 -14 0 140

1 -120 0 0 630

1 -1386 660 0 0 2772

. . .

Figure 5. Triangle generated by Am,j , 0 ≤ j ≤ m.

Note that starting from row m ≥ 11 the terms of Triangle (2.13) consist rational
numbers, for example, A11,1 = 800361655623.60, therefore it’s split into two se-
quences A302971, A304042 that show numerators and denominators of Am,j , 0 ≤
j ≤ m, respectively. To verify the terms that definition (2.12) produces one should
refer to Mathematica code2.

2def 2 12.txt, [25]

https://oeis.org/A302971
https://oeis.org/A304042
https://kolosovpetro.github.io/mathematica_codes/def_2_12.txt
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2.1. Properties of Mm(n, k) and Am,j. Here we show a few properties of defini-
tion Mm(n, k), some of them correlates with properties of M1(n, k) in subsection
(1.1)

(1) Sum of Am,j , m ≥ 0 gives

(2.14)
∑
j

Am,j = 22m+1 − 1

(2) Generalization of (2.1) for all positive integers m ≥ 0

n−1∑
k=0

∑
j

Am,j(n− k)jkj = n2m+1

Can be verified via Mathematica code3.
(3) Similarly to particular property (1.28), items of {Mm(n, k)}nk=0, m ≥ 0 is

symmetric, i.e

(2.15) Mm(n, k) = Mm(n, n− k)

(4) From (2.15) immediately follows

(2.16)

n−1∑
k=0

Mm(n, k) =

n∑
k=1

Mm(n, k) = n2m+1, n ≥ 0, m ≥ 0

(5) Generalization of linear recurrence (1.25), that is 2M1(n, k) = M1(n +
1, k) + M1(n− 1, k)

(2.17)

t∑
k=0

(−1)k
(
t + 1

k

)
Mm(n + t− k, k) = 0, n ≥ 0, t ≥ m

then

(2.18)

(
t + 1

t

)
Mm(n, k) =

{∑t−1
k=0(−1)k+1

(
t+1
k

)
Mm(n + t− k, k), t = even∑t−1

k=0(−1)k
(
t+1
k

)
Mm(n + t− k, k), t = odd

(6) Am,m, m = 0, 1, 2, ... are terms of A002457.

2.2. Generalized Binomial Series by means of properties (1.21), (1.22).
Reviewing properties (1.21) and (1.22), we can say that for each natural n holds

(2.19) nm = A0,1,nn
m−2 −B0,1,nn

m−3

Note that A0,1,n and Am,j are different definitions. Rewrite the right part of (2.19)
regarding to itself as recursion

nm = A0,1,n(A0,1,nn
m−4 −B0,1,nn

m−5)−B0,1,n(A0,1,nn
m−5 −B0,1,nn

m−6)

= A2
0,1,n

nm−4 − 2A0,1,nB0,1,nn
m−5 + B2

0,1,n
nm−6

Reviewing above expression we can observe Binomial coefficients before each A0,1,n ·
B0,1,n. Continuous j-times recursion of right part of (2.19) gives us

(2.20) nm =

∞∑
k=0

(−1)k
(
j

k

)
Aj−k

0,1,n
Bk

0,1,n
nm−2j−k, j ≥ 0

Solutions A0,1,n, B0,1,n of equation (2.19) are listed in follow table

3expression 2 1.txt, [26].

https://oeis.org/A002457
https://kolosovpetro.github.io/mathematica_codes/expression_2_1.txt
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x A0,x B0,x A1,x B1,x

1 1 0 6 5
2 6 4 18 28
3 18 25 36 81
4 36 80 60 176
5 60 175 90 325
6 90 324 126 540
7 126 539 168 833
8 168 832 216 1216
9 216 1215 270 1701
10 270 1700 330 2300

Table 9. Array of coefficients A0,1,n, B0,1,n given n = 1, ..., 10.

Sequence A1,x is generated by 3n2 +3n, sequence A028896 in OEIS, [23]. Sequence
B1,n is generated by 2n3 + 3n2, sequence A275709 in OEIS, [20].

3. Relation between Pascal’s Triangle and Hypercubes

In this section let review and generalize well known fact about connection be-
tween row sums of Pascal triangle and 2−dimension Hypercube, recall property

(3.1)

n∑
k=0

(
n

k

)
= 2n

Now, let multiply each k -th term of of n-th row of Pascal’s triangle [1] by 2k

1

1 2

1 4 4

1 6 12 8

1 8 24 32 16

Figure 10. Triangle built by
(
n
k

)
· 2k, 0 ≤ k ≤ n ≤ 4.

We can notice that

(3.2)

n∑
k=0

(
n

k

)
· 2k = 3n, 0 ≤ k ≤ n, (n, k) ∈ N

Hereby, let be theorem

Theorem 3.3. Volume of n-dimension hypercube with length m could be calculated
as

(3.4) mn =

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj

where m and n - positive integers.

Proof. Recall induction over m, in (3.1) is shown a well-known example for m = 2.

(3.5) 2n =

n∑
k=0

(
n

k

)
(2− 1)k

https://oeis.org/A028896
https://oeis.org/A275709
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Review (3.5) and suppose that

(3.6) (2 + 1︸ ︷︷ ︸
m=3

)n =

n∑
k=0

(
n

k

)
((2− 1) + 1︸ ︷︷ ︸

m−1

)k

And, obviously, this statement holds by means of Newton’s Binomial Theorem [2],
[3] given m = 3, more detailed, recall expansion for (x + 1)n to show it.

(3.7) (x + 1)n =

n∑
k=0

(
n

k

)
xk

Substituting x = 2 to (3.7) we have reached (3.6).
Next, let show example for each m ∈ N. Recall Binomial theorem to show this

(3.8) mn =

n∑
k=0

(
n

k

)
(m− 1)k

Hereby, for m + 1 we receive Binomial theorem again

(3.9) (m + 1)n =

n∑
k=0

(
n

k

)
mk

Review result from (3.8) and substituting Binomial expansion
∑k

j=0

(
k
j

)
(−1)n−kmj

instead (m− 1)k we receive desired result

mn =

n∑
k=0

(
n

k

)
(m− 1)k︸ ︷︷ ︸∑k

j=0 (k
j)(−1)k−jmj

=

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)k−jmj(3.10)

=

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj

This completes the proof. �

The (3.5) is analog of MacMillan Double Binomial Sum (see equation 13 in [5]).

4. Faulhaber’s formula and finite differences

In this section we try to go into details about our identities (1.6), (1.7), (1.8).
On the page 9 of [21] we can find an identities

n =
(
n
1

)
n3 = 6

(
n+1

3

)
+
(
n
1

)
n5 = 120

(
n+2

5

)
+ 30

(
n+1

3

)
+
(
n
1

)
For example, consider a first order finite difference applying above identities, we
have

∆n =
(
n
0

)
∆n3 = 6

(
n+1

2

)
+
(
n
0

)
∆n5 = 120

(
n+2

4

)
+ 30

(
n+1

2

)
+
(
n
0

)
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These identities may have the view

(4.1) nm =

{∑
k J(n, k)

(
n+m−k

2m+1−2k

)
, m = odd∑

k J(n, k)n
(

n+m−k
2m+1−2k

)
, m = even

where J(n, k) is defined by same identity. Particularly, coefficients J(n, k) are
related to what Riordan ([22], page 213) has called central factorial numbers of the
second kind. The t-order finite difference of monomial nm is

(4.2) ∆tnm =

{∑
k J(n, k)

(
n+m−k

2m+1−t−2k

)
, m = odd∑

k J(n, k)n
(

n+m−k
2m+1−t−2k

)
, m = even
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6. Conclusion

In this paper particular pattern, that is triangle A287326 in OEIS, which shows
the expansion of perfect cube n as row sum over 0 ≤ k ≤ n − 1 is generalized for
each odd power 2m + 1, m = 0, 1, 2..., we have reached a result

n−1∑
k=0

m∑
j=0

Am,j(n− k)jkj = n2m+1, m = 0, 1, 2, ...,

where Am,j is defined by definition (2.12). The coefficient M1(n, k) is defined by
definition (1.18) and generalized to Mm(n, k), m > 1 at section 2. Properties of
M1(n, k) and Mm(n, k) are shown in (1.20) and subsection 2.1, respectively. An
analog of MacMillan Double Binomial Sum [5] is shown in section 3. Relation
between Faulhaber’s sum

∑
nm and finite differences of power are shown in section

4.
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