# QR Decomposition using Gram-Schmidt Orthogonalization 

Mohammad Umar Rehman<br>Research Scholar, EE Department, IIT Delhi<br>umar.ee.iitd@gmail.com


#### Abstract

A very quick and easy to understand introduction to Gram-Schmidt Orthogonalization (Orthonormalization) and how to obtain QR decomposition of a matrix using it.


Aim Given a basis $\mathbb{B}$ of a vector subspace $\mathbf{V}$ spanned by vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ it is required to find an orthonormal basis $\left\{q_{1}, q_{2}, \ldots, q_{\mathrm{n}}\right\}$ (A basis that is orthogonal with unit length of constituent vectors). Thus,

$$
q_{\mathrm{i}}^{\mathrm{T}} q_{\mathrm{j}}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Proof. Note that $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{n}}\right\}=\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{\mathrm{n}}\right\}$ (successive spanning)
Lets start with one vector $v_{1}$, normalize this to obtain vector $q_{1}$ as

$$
\begin{equation*}
q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \tag{1}
\end{equation*}
$$

Now, lets include another vector, $v_{2}$ to the picture ${ }^{1}$. We have already obtained $q_{1}$, now we need $q_{2}$, which can be obtained by normalizing a vector that is orthogonal to $v_{1}\left(q_{1}\right)$. Suppose, this vector is $\tilde{v}_{2}$. By triangle law of vectors, it can be seen that

$$
\tilde{v}_{2}=v_{2}-v_{1}
$$

But, to be more formal in line with the algorithm we write $\tilde{v}_{2}$ as

$$
\begin{equation*}
\tilde{v}_{2}=v_{2}-\operatorname{proj}_{v_{1}}\left(v_{2}\right)=v_{2}-\left\langle v_{2}, q_{1}\right\rangle q_{1} \tag{2}
\end{equation*}
$$

and,

$$
q_{2}=\frac{\tilde{v}_{2}}{\left\|\tilde{v}_{2}\right\|}
$$

where, $\langle a, b\rangle=a^{\mathrm{T}} b$ is the inner product.
Going one step further we include $v_{3}$ and proceed on similar lines to obtain $\tilde{v}_{3}$ as

$$
\begin{equation*}
\tilde{v}_{3}=v_{3}-\left\langle v_{3}, q_{1}\right\rangle q_{1}-\left\langle v_{3}, q_{2}\right\rangle q_{2}, q_{3}=\tilde{v}_{3} /\left\|\tilde{v}_{3}\right\| \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\tilde{v}_{4}=v_{4}-\left\langle v_{4}, q_{1}\right\rangle q_{1}-\left\langle v_{4}, q_{2}\right\rangle q_{2}-\left\langle v_{4}, q_{3}\right\rangle q_{3}, q_{3}=\tilde{v}_{4} /\left\|\tilde{v}_{4}\right\| \tag{4}
\end{equation*}
$$

[^0]So, this process continues and we are in a position to write the expression for $\tilde{v}_{\text {n }}$

$$
\begin{equation*}
\tilde{v}_{\mathrm{n}}=v_{\mathrm{n}}-\left\langle v_{\mathrm{n}}, q_{1}\right\rangle q_{1}-\left\langle v_{\mathrm{n}}, q_{2}\right\rangle q_{2}-\cdots-\left\langle v_{\mathrm{n}}, q_{\mathrm{n}-1}\right\rangle q_{\mathrm{n}-1}, q_{n}=\tilde{v}_{n} /\left\|\tilde{v}_{n}\right\| \tag{5}
\end{equation*}
$$

In compact form,

$$
\tilde{v}_{\mathrm{n}}=v_{\mathrm{n}}-\sum_{i=0}^{n-1}\left\langle v_{\mathrm{n}}, q_{\mathrm{i}}\right\rangle q_{\mathrm{i}}
$$

Hence, we have obtained an orthonormal basis from a regular basis for the vector subspace $\mathbf{V}$.

## Obtaining QR decomposition

Now, let us rearrange the equations (1) to (5) in terms of $v$ 's only

$$
\begin{gather*}
v_{1}=\left\langle v_{1} \| q_{1}\right.  \tag{6}\\
v_{2}=\left\langle v_{2}, q_{1}\right\rangle q_{1}+\tilde{v}_{2}=\left\langle v_{2}, q_{1}\right\rangle q_{1}+\left\|\tilde{v}_{2}\right\| q_{2}  \tag{7}\\
v_{3}=\left\langle\left\langle v_{3}, q_{1}\right\rangle q_{1}+\left\langle v_{3}, q_{2}\right\rangle q_{2}+\tilde{v}_{3}=\left\langle v_{3}, q_{1}\right\rangle q_{1}+\left\langle v_{3}, q_{2}\right\rangle q_{2}+\left\|\tilde{v}_{3}\right\| q_{3}\right.  \tag{8}\\
v_{4}=  \tag{9}\\
\left\langle v_{4}, q_{1}\right\rangle q_{1}+\left\langle v_{4}, q_{2}\right\rangle q_{2}+\left\langle v_{4}, q_{3}\right\rangle q_{3}+\left\|\tilde{v}_{4}\right\| q_{4}= \\
\vdots  \tag{10}\\
v_{n}=\left\langle v_{\mathrm{n}}, q_{1}\right\rangle q_{1}+\left\langle v_{\mathrm{n}}, q_{2}\right\rangle q_{2}+\cdots+\left\langle v_{\mathrm{n}-1}, q_{\mathrm{n}-1}\right\rangle q_{\mathrm{n}-1}+\left\|\tilde{v}_{\mathrm{n}}\right\| q_{\mathrm{n}}
\end{gather*}
$$

And rewrite these equations in the matrix form, we get

$$
\begin{align*}
& {\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \ldots & q_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{ccccc}
\left\|v_{1}\right\| & \left\langle v_{2}, q_{1}\right\rangle & \left\langle v_{3}, q_{1}\right\rangle & \ldots & \left\langle v_{\mathrm{n}}, q_{1}\right\rangle \\
0 & \left\|\tilde{v}_{2}\right\| & \left\langle v_{3}, q_{2}\right\rangle & \ldots & \left\langle v_{\mathrm{n}}, q_{2}\right\rangle \\
0 & 0 & \left\|\tilde{v}_{3}\right\| & \ldots & \left\langle v_{\mathrm{n}}, q_{3}\right\rangle \\
0 & 0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \left\|\tilde{v}_{\mathrm{n}-1}\right\| & \left\langle v_{\mathrm{n}-1}, q_{\mathrm{n}-1}\right\rangle \\
0 & 0 & 0 & 0 & \left\|\tilde{v}_{\mathrm{n}}\right\|
\end{array}\right] }  \tag{11}\\
&  \tag{12}\\
& \\
& \\
&
\end{align*}
$$


[^0]:    ${ }^{1}$ This is a preliminary version of the document, a more elaborate document will be made available soon.

