Theorem 2.3. DeMorgan's Laws for sets. Let A and B be sets. Then we have 1. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof. To prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$, we start by showing that each set is a subset of the other. The definition of a subset states that A is a subset of B if every element $a \in A$ is also an element of B. Thus if two sets have the same elements, since A and B are sets, if $A \subset B$ and $B \subset A$, then A = B. Suppose $x \in \overline{A \cup B}$, which means $x \notin A \cup B$. Then $x \notin A$ or $x \notin B$. Hence, $x \in \overline{A}$ or $x \in \overline{B}$. This means $x \in \overline{A \cap B}$. Thus, $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$. Now suppose, $x \in \overline{A} \cap \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$. Hence $x \notin A$ or $x \notin B$, Which means that $x \notin A \cup B$. Therefore, $x \in \overline{A \cup B}$. Thus proving that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

To prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$, we start by showing that each set is a subset of the other. Suppose $x \in \overline{A \cap B}$, which means $x \notin A \cap B$. Then $x \notin A$ or $x \notin B$. Hence, $x \in \overline{A}$ or $x \in \overline{B}$. This means $x \in \overline{A \cup B}$. Thus, $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$. Now suppose, $x \in \overline{A \cup B}$. Then $x \notin A \cap x \notin \overline{A} \cup \overline{B}$. Then $x \notin \overline{A} \cap \overline{B} \subset \overline{A} \cup \overline{B}$. Now suppose, $x \in \overline{A \cup B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$. Hence $x \notin A$ or $x \notin B$, Which means that $x \notin A \cap B$. Therefore, $x \in \overline{A \cap B}$. Thus proving that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Theorem 4.4. Let a,b and $c \in \mathbb{Z}$. If $\frac{a}{b}$ and $\frac{b}{c}$ then $\frac{a}{c}$.

Proof. Assume $\frac{a}{b}$ and $\frac{b}{c}$. Since $\frac{a}{b}$, there exists $n1 \in \mathbb{Z}$ such that an1=b. Since $\frac{b}{c}$, there exists n2 such that bn2=c.Since we know the existential statement is true in the universe you can use it to create an instance of an object with the property it describes. So, we let m=n1n2.Then am=an1n2=bn2=c.Since am=c, we have shown $\frac{a}{c}$.