Theorem 2.3. DeMorgan's Laws for sets. Let A and B be sets. Then we have

1. $\overline{A \cup B}=\bar{A} \cap \bar{B}$
2. $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Proof. To prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$, we start by showing that each set is a subset of the other. The definition of a subset states that A is a subset of B if every element $a \in A$ is also an element of B.Thus if two sets have the same elements, since A and B are sets, if $A \subset B$ and $B \subset A$, then $\mathrm{A}=\mathrm{B}$. Suppose $x \in \overline{A \cup B}$, which means $x \notin A \cup B$. Then $x \notin A$ or $x \notin B$. Hence, $x \in \bar{A}$ or $x \in \bar{B}$. This means $x \in \overline{A \cap B}$. Thus, $\overline{A \cup B} \subset \bar{A} \cap \bar{B}$. Now suppose, $x \in \bar{A} \cap \bar{B}$. Then $x \in \bar{A}$ or $x \in \bar{B}$. Hence $x \notin A$ or $x \notin B$, Which means that $x \notin A \cup B$. Therefore, $x \in \overline{A \cup B}$. Thus proving that $\overline{A \cup B}=\bar{A} \cap \bar{B}$.

To prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$, we start by showing that each set is a subset of the other. Suppose $x \in \overline{A \cap B}$, which means $x \notin A \cap B$. Then $x \notin A$ or $x \notin B$. Hence, $x \in \bar{A}$ or $x \in \bar{B}$. This means $x \in \overline{A \cup B}$. Thus, $\overline{A \cap B} \subset \bar{A} \cup \bar{B}$. Now suppose, $x \in \bar{A} \cup \bar{B}$. Then $x \in \bar{A}$ or $x \in \bar{B}$. Hence $x \notin A$ or $x \notin B$, Which means that $x \notin A \cap B$. Therefore, $x \in \overline{A \cap B}$. Thus proving that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Theorem 4.4. Let a, b and $\mathrm{c} \in \mathbb{Z}$. If $\frac{a}{b}$ and $\frac{b}{c}$ then $\frac{a}{c}$.
Proof. Assume $\frac{a}{b}$ and $\frac{b}{c}$. Since $\frac{a}{b}$, there exists $n 1 \in \mathbb{Z}$ such that $\mathrm{a} n 1=\mathrm{b}$. Since $\frac{b}{c}$, there exists $n 2$ such that $\mathrm{b} n 2=\mathrm{c}$. Since we know the existential statement is true in the universe you can use it to create an instance of an object with the property it describes. So, we let $\mathrm{m}=\mathrm{n} 1 \mathrm{n} 2$. Then $\mathrm{am}=\mathrm{an} 1 \mathrm{n} 2=\mathrm{bn} 2=\mathrm{c}$. Since $\mathrm{am}=\mathrm{c}$, we have shown $\frac{a}{c}$.

