1. Since a_{1} has only one slot available, we can partition the entire subset of possible combinations into those with a_{1} and those with out it. Where a_{1} is not chosen, you have (k-1) baskets thus (k-2) sticks and r crosses. So it would be $\binom{(k-1)-r-1}{r}$ which equals $\binom{k-r-2}{r}$. Then we have to find the number of ways in which we use a_{1}. In this case, we place 1 cross in the a_{1} basket. Now we again have (k-1) baskets to choose from, but now we only have (r-1) crosses. So we are left with combination of $\binom{k+r-3}{r-1}$
Thus the answer $\binom{k+r-3}{r-1}+\binom{k-r-2}{r}$
2. the mistake is to assume that $x-3$ is divisible by 3 simply because $x-3<x$. This is not logical. We already assumed that x is a counterexample therefore it is not divisible by 3 . But then we arrive at the conclusion that $x-3$ IS divisible by 3 , from the simple fact that $x-3<x$. This is the mistake.
3. To prove by contradiction, we will assume that \sqrt{a} is rational. Therefore we can write it as $\sqrt{a}=\frac{p}{q}$ such that $p, q \in \mathbb{Z}, q \neq 0$, and p, q are relatively prime.
by squaring both sides we get $a=\frac{p^{2}}{q^{2}}$
$p^{2}=a * q^{2}$ and since we know that $a=2 c^{2}$ then, $p^{2}=2 c^{2} q^{2}$
According to the fundamental law of arithematic,
$S\left(p^{2}\right)=2 S(p)$ therefore $S\left(p^{2}\right)$ is even
but we also know that $p^{2}=2 c^{2} q^{2}$ so $S\left(p^{2}\right)=S\left(2 c^{2} q^{2}\right)$
According to the fundamental Law of arithametic,
$S\left(2 c^{2} q^{2}\right)=1+2 S(q)+2 S(p)=2(\mathrm{~S}(\mathrm{c})+\mathrm{S}(\mathrm{q}))+1$
thus $S\left(p^{2}\right)$ is now odd which contradicts our statement that it is even. Thus proving that \sqrt{a} must be irrational.
