Finite Element Method by Example in Qt/C++

knapiontek@gmail.com

April 1, 2014

Abstract
Learn FEM by example in a few steps.

1 Introduction

I spent some time lerning FEM using the Internet resources only. I could not find a complete explanation in one place so I decided to create one by putting togather all information I found. Below work is an output of self education. Just curious where I will get from here! All suggestions and comments are welcome!

2 Rotation of Objects

2.1 Rotation of Point 2D

given from geometry

hence

$$
\begin{aligned}
& x_{1}=x_{0} \cos \beta-y_{0} \sin \beta \\
& y_{1}=x_{0} \sin \beta+y_{0} \cos \beta
\end{aligned}
$$

2.2 Rotation Matrix 3D

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \beta & -\sin \beta & 0 \\
\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

2.3 Example of Rotated Cube

2.4 Element Stiffness Matrix in Local Coordinates

Relation between axial forces, q1, q2, and axial displacements, u1, u2, only (in local coordinates).

$$
\begin{gathered}
\mathbf{k}=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
\mathbf{q}=\mathbf{k ~ u}
\end{gathered}
$$

2.5 Coordinate Transformation

Global and local coordinates

$$
\begin{gathered}
L=\sqrt{\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}+\left(z_{b}-z_{a}\right)^{2}} \\
\cos x=\frac{x_{b}-x_{a}}{L}=c_{x} \\
\cos y=\frac{y_{b}-y_{a}}{L}=c_{y} \\
\cos z=\frac{z_{b}-z_{a}}{L}=c_{z}
\end{gathered}
$$

Displacements

$$
\begin{aligned}
u_{a} & =a_{x} \cos x+a_{y} \cos y+a_{z} \cos z \\
u_{b} & =b_{x} \cos x+b_{y} \cos y+b_{z} \cos z
\end{aligned}
$$

$$
\left[\begin{array}{l}
u_{a} \\
u_{b}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{x} & c_{y} & c_{z} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{x} & c_{y} & c_{z}
\end{array}\right]\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z} \\
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

$$
\mathbf{u}=\mathbf{T} \mathbf{v}
$$

Forces

$$
\begin{aligned}
{\left[\begin{array}{l}
f_{a x} \\
f_{a y} \\
f_{a z} \\
f_{b x} \\
f_{b y} \\
f_{b z}
\end{array}\right]=} & {\left[\begin{array}{cc}
c_{x} & 0 \\
c_{y} & 0 \\
c_{z} & 0 \\
0 & c_{x} \\
0 & c_{y} \\
0 & c_{z}
\end{array}\right]\left[\begin{array}{l}
q 1 \\
q 2
\end{array}\right] } \\
f & =T^{T} q
\end{aligned}
$$

2.6 Element Stiffness Matrix in Global Coordinates

$$
\begin{gathered}
{\left[\begin{array}{l}
q 1 \\
q 2
\end{array}\right]=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u 1 \\
u 2
\end{array}\right]} \\
f=T T q u=T v \\
q=k u \\
q=k T v \\
T T q=T T k T v \\
f=T T k T v \\
f=K v \\
K=\frac{E A}{L}\left[\begin{array}{ccccc}
c_{x}^{2} & c_{x} c_{y} & c_{x} c_{z} & -c_{x}^{2} & -c_{x} c_{y} \\
c_{x} c_{y} & c_{y}^{2} & c_{y} c_{x} c_{z} \\
c_{x} c_{z} & c_{y} c_{z} & c_{z}^{z} & -c_{x} c_{y} & -c_{y}^{2} \\
-c_{x}^{2} & -c_{x} c_{y} c_{y} & -c_{x} c_{z} & c_{x}^{2} & c_{y} c_{z} \\
-c_{x} c_{y} & -c_{z}^{2} \\
-c_{x} c_{z} & -c_{y}^{2} & -c_{y} c_{z} & -c_{y} c_{z} & c_{x} c_{y} \\
c_{x} & c_{x} c_{z} & c_{y}^{2} c_{z} & c_{y} c_{z} \\
c_{z}
\end{array}\right]
\end{gathered}
$$

2.7 Stiffness Matrix Construction

Consider linear equations with exactly one solution:

$$
\begin{aligned}
a_{1} x+b_{1} y & =c_{1} \\
a_{2} x+b_{2} y & =c_{2} \\
{\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Fixing y to 0 one of constants must be freed (c_{2} has been chosen). Moving variables to left and constants to right side we get

$$
\begin{gathered}
a_{1} x=c_{1} \\
a_{2} x-c_{2}=0 \\
{\left[\begin{array}{cc}
a_{1} & 0 \\
a_{2} & -1
\end{array}\right]\left[\begin{array}{c}
x \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]}
\end{gathered}
$$

